Cargando…
Advanced analytical methodologies for measuring healthy ageing and its determinants, using factor analysis and machine learning techniques: the ATHLOS project
A most challenging task for scientists that are involved in the study of ageing is the development of a measure to quantify health status across populations and over time. In the present study, a Bayesian multilevel Item Response Theory approach is used to create a health score that can be compared...
Autores principales: | Félix Caballero, Francisco, Soulis, George, Engchuan, Worrawat, Sánchez-Niubó, Albert, Arndt, Holger, Ayuso-Mateos, José Luis, Haro, Josep Maria, Chatterji, Somnath, Panagiotakos, Demosthenes B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345043/ https://www.ncbi.nlm.nih.gov/pubmed/28281663 http://dx.doi.org/10.1038/srep43955 |
Ejemplares similares
-
Social determinants, health status and 10-year mortality among 10,906 older adults from the English longitudinal study of aging: the ATHLOS project
por: Kollia, Natasa, et al.
Publicado: (2018) -
Cohort Profile: The Ageing Trajectories of Health – Longitudinal Opportunities and Synergies (ATHLOS) project
por: Sanchez-Niubo, Albert, et al.
Publicado: (2019) -
Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk
por: Dimopoulos, Alexandros C., et al.
Publicado: (2018) -
Sociodemographic Indicators of Health Status Using a Machine Learning Approach and Data from the English Longitudinal Study of Aging (ELSA)
por: Engchuan, Worrawat, et al.
Publicado: (2019) -
AN INTRODUCTION TO THE ATHLOS PROJECT: AGEING TRAJECTORIES OF HEALTH: LONGITUDINAL OPPORTUNITIES AND SYNERGIES
por: Prina, Matthew, et al.
Publicado: (2019)