Cargando…
MiR-34a-5p promotes multi-chemoresistance of osteosarcoma through down-regulation of the DLL1 gene
MiR-34a-5p has been implicated in the tumorigenesis and progression of several types of cancer. However, the role of miR-34a-5p in osteosarcoma (OS) remains largely unknown. This study was performed in two multi-chemosensitive (G-292 and MG63.2) and two resistant (SJSA-1 and MNNG/HOS) OS cell lines....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345075/ https://www.ncbi.nlm.nih.gov/pubmed/28281638 http://dx.doi.org/10.1038/srep44218 |
Sumario: | MiR-34a-5p has been implicated in the tumorigenesis and progression of several types of cancer. However, the role of miR-34a-5p in osteosarcoma (OS) remains largely unknown. This study was performed in two multi-chemosensitive (G-292 and MG63.2) and two resistant (SJSA-1 and MNNG/HOS) OS cell lines. MiR-34a-5p promotes OS multi-chemoresistance via its repression of the Delta-like ligand 1 (DLL1) gene, the ligand of the Notch pathway, and thus negatively correlates with OS chemoresistance. The siRNA-mediated repression of the DLL1 gene suppressed cell apoptosis and de-sensitized G-292 and MG63.2 cells, while overexpression of DLL1 sensitized SJSA-1 and MNNG/HOS cells to drug-induced cell death. In agreement with the changes in the drug-induced cell death, the activity of the ATF2/ATF3/ATF4 signaling pathway was significantly altered by a forced reversal of miR-34a-5p or DLL1 levels in OS cells. DLL1 is a target of miR-34a-5p and negatively regulates the multi-chemoresistance of OS. This study suggested that miR-34a-5p, DLL1 and the ATF2/ATF3/ATF4 signaling pathway-associated genes are the potential diagnostic and/or therapeutic targets for an effective chemotherapy of OS. Our results also provide novel insights into the effective chemotherapy for OS patients. |
---|