Cargando…
Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts
BACKGROUND: Mesenchymal stem/stromal cells (MSCs) represent an attractive tool for cell-based cancer therapy mainly because of their ability to migrate to tumors and to release bioactive molecules. However, the impact of MSCs on tumor growth has not been fully established. We previously demonstrated...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345323/ https://www.ncbi.nlm.nih.gov/pubmed/28279193 http://dx.doi.org/10.1186/s13287-017-0516-3 |
_version_ | 1782513695516000256 |
---|---|
author | Pacioni, Simone D’Alessandris, Quintino Giorgio Giannetti, Stefano Morgante, Liliana Coccè, Valentina Bonomi, Arianna Buccarelli, Mariachiara Pascucci, Luisa Alessandri, Giulio Pessina, Augusto Ricci-Vitiani, Lucia Falchetti, Maria Laura Pallini, Roberto |
author_facet | Pacioni, Simone D’Alessandris, Quintino Giorgio Giannetti, Stefano Morgante, Liliana Coccè, Valentina Bonomi, Arianna Buccarelli, Mariachiara Pascucci, Luisa Alessandri, Giulio Pessina, Augusto Ricci-Vitiani, Lucia Falchetti, Maria Laura Pallini, Roberto |
author_sort | Pacioni, Simone |
collection | PubMed |
description | BACKGROUND: Mesenchymal stem/stromal cells (MSCs) represent an attractive tool for cell-based cancer therapy mainly because of their ability to migrate to tumors and to release bioactive molecules. However, the impact of MSCs on tumor growth has not been fully established. We previously demonstrated that murine MSCs show a strong tropism towards glioblastoma (GBM) brain xenografts and that these cells are able to uptake and release the chemotherapeutic drug paclitaxel (PTX), maintaining their tropism towards the tumor. Here, we address the therapy-relevant issue of using MSCs from human donors (hMSCs) for local or systemic administration in orthotopic GBM models, including xenografts of patient-derived glioma stem cells (GSCs). METHODS: U87MG or GSC1 cells expressing the green fluorescent protein (GFP) were grafted onto the striatum of immunosuppressed rats. Adipose hMSCs (Ad-hMSCs), fluorescently labeled with the mCherry protein, were inoculated adjacent to or into the tumor. In rats bearing U87MG xenografts, systemic injections of Ad-hMSCs or bone marrow (BM)-hMSCs were done via the femoral vein or carotid artery. In each experiment, either PTX-loaded or unloaded hMSCs were used. To characterize the effects of hMSCs on tumor growth, we analyzed survival, tumor volume, tumor cell proliferation, and microvascular density. RESULTS: Overall, the AD-hMSCs showed remarkable tropism towards the tumor. Intracerebral injection of Ad-hMSCs significantly improved the survival of rats with U87MG xenografts. This effect was associated with a reduction in tumor growth, tumor cell proliferation, and microvascular density. In GSC1 xenografts, intratumoral injection of Ad-hMSCs depleted the tumor cell population and induced migration of resident microglial cells. Overall, PTX loading did not significantly enhance the antitumor potential of hMSCs. Systemically injected Ad- and BM-hMSCs homed to tumor xenografts. The efficiency of hMSC homing ranged between 0.02 and 0.5% of the injected cells, depending both on the route of cell injection and on the source from which the hMSCs were derived. Importantly, systemically injected PTX-loaded hMSCs that homed to the xenograft induced cytotoxic damage to the surrounding tumor cells. CONCLUSIONS: hMSCs have a therapeutic potential in GBM brain xenografts which is also expressed against the GSC population. In this context, PTX loading of hMSCs seems to play a minor role. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-017-0516-3) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5345323 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-53453232017-03-14 Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts Pacioni, Simone D’Alessandris, Quintino Giorgio Giannetti, Stefano Morgante, Liliana Coccè, Valentina Bonomi, Arianna Buccarelli, Mariachiara Pascucci, Luisa Alessandri, Giulio Pessina, Augusto Ricci-Vitiani, Lucia Falchetti, Maria Laura Pallini, Roberto Stem Cell Res Ther Research BACKGROUND: Mesenchymal stem/stromal cells (MSCs) represent an attractive tool for cell-based cancer therapy mainly because of their ability to migrate to tumors and to release bioactive molecules. However, the impact of MSCs on tumor growth has not been fully established. We previously demonstrated that murine MSCs show a strong tropism towards glioblastoma (GBM) brain xenografts and that these cells are able to uptake and release the chemotherapeutic drug paclitaxel (PTX), maintaining their tropism towards the tumor. Here, we address the therapy-relevant issue of using MSCs from human donors (hMSCs) for local or systemic administration in orthotopic GBM models, including xenografts of patient-derived glioma stem cells (GSCs). METHODS: U87MG or GSC1 cells expressing the green fluorescent protein (GFP) were grafted onto the striatum of immunosuppressed rats. Adipose hMSCs (Ad-hMSCs), fluorescently labeled with the mCherry protein, were inoculated adjacent to or into the tumor. In rats bearing U87MG xenografts, systemic injections of Ad-hMSCs or bone marrow (BM)-hMSCs were done via the femoral vein or carotid artery. In each experiment, either PTX-loaded or unloaded hMSCs were used. To characterize the effects of hMSCs on tumor growth, we analyzed survival, tumor volume, tumor cell proliferation, and microvascular density. RESULTS: Overall, the AD-hMSCs showed remarkable tropism towards the tumor. Intracerebral injection of Ad-hMSCs significantly improved the survival of rats with U87MG xenografts. This effect was associated with a reduction in tumor growth, tumor cell proliferation, and microvascular density. In GSC1 xenografts, intratumoral injection of Ad-hMSCs depleted the tumor cell population and induced migration of resident microglial cells. Overall, PTX loading did not significantly enhance the antitumor potential of hMSCs. Systemically injected Ad- and BM-hMSCs homed to tumor xenografts. The efficiency of hMSC homing ranged between 0.02 and 0.5% of the injected cells, depending both on the route of cell injection and on the source from which the hMSCs were derived. Importantly, systemically injected PTX-loaded hMSCs that homed to the xenograft induced cytotoxic damage to the surrounding tumor cells. CONCLUSIONS: hMSCs have a therapeutic potential in GBM brain xenografts which is also expressed against the GSC population. In this context, PTX loading of hMSCs seems to play a minor role. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13287-017-0516-3) contains supplementary material, which is available to authorized users. BioMed Central 2017-03-09 /pmc/articles/PMC5345323/ /pubmed/28279193 http://dx.doi.org/10.1186/s13287-017-0516-3 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Pacioni, Simone D’Alessandris, Quintino Giorgio Giannetti, Stefano Morgante, Liliana Coccè, Valentina Bonomi, Arianna Buccarelli, Mariachiara Pascucci, Luisa Alessandri, Giulio Pessina, Augusto Ricci-Vitiani, Lucia Falchetti, Maria Laura Pallini, Roberto Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts |
title | Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts |
title_full | Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts |
title_fullStr | Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts |
title_full_unstemmed | Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts |
title_short | Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts |
title_sort | human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345323/ https://www.ncbi.nlm.nih.gov/pubmed/28279193 http://dx.doi.org/10.1186/s13287-017-0516-3 |
work_keys_str_mv | AT pacionisimone humanmesenchymalstromalcellsinhibittumorgrowthinorthotopicglioblastomaxenografts AT dalessandrisquintinogiorgio humanmesenchymalstromalcellsinhibittumorgrowthinorthotopicglioblastomaxenografts AT giannettistefano humanmesenchymalstromalcellsinhibittumorgrowthinorthotopicglioblastomaxenografts AT morganteliliana humanmesenchymalstromalcellsinhibittumorgrowthinorthotopicglioblastomaxenografts AT coccevalentina humanmesenchymalstromalcellsinhibittumorgrowthinorthotopicglioblastomaxenografts AT bonomiarianna humanmesenchymalstromalcellsinhibittumorgrowthinorthotopicglioblastomaxenografts AT buccarellimariachiara humanmesenchymalstromalcellsinhibittumorgrowthinorthotopicglioblastomaxenografts AT pascucciluisa humanmesenchymalstromalcellsinhibittumorgrowthinorthotopicglioblastomaxenografts AT alessandrigiulio humanmesenchymalstromalcellsinhibittumorgrowthinorthotopicglioblastomaxenografts AT pessinaaugusto humanmesenchymalstromalcellsinhibittumorgrowthinorthotopicglioblastomaxenografts AT riccivitianilucia humanmesenchymalstromalcellsinhibittumorgrowthinorthotopicglioblastomaxenografts AT falchettimarialaura humanmesenchymalstromalcellsinhibittumorgrowthinorthotopicglioblastomaxenografts AT palliniroberto humanmesenchymalstromalcellsinhibittumorgrowthinorthotopicglioblastomaxenografts |