Cargando…

Targeting myeloid differentiation protein 2 by the new chalcone L2H21 protects LPS‐induced acute lung injury

Acute inflammatory diseases are the leading causes of mortality in intensive care units. Myeloid differentiation 2 (MD‐2) is required for recognizing lipopolysaccharide (LPS) by toll‐like receptor 4 (TLR4), and represents an attractive therapeutic target for LPS‐induced inflammatory diseases. In thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yali, Xu, Tingting, Wu, Beibei, Chen, Hongjin, Pan, Zheer, Huang, Yi, Mei, Liqin, Dai, Yuanrong, Liu, Xing, Shan, Xiaoou, Liang, Guang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345657/
https://www.ncbi.nlm.nih.gov/pubmed/27860279
http://dx.doi.org/10.1111/jcmm.13017
Descripción
Sumario:Acute inflammatory diseases are the leading causes of mortality in intensive care units. Myeloid differentiation 2 (MD‐2) is required for recognizing lipopolysaccharide (LPS) by toll‐like receptor 4 (TLR4), and represents an attractive therapeutic target for LPS‐induced inflammatory diseases. In this study, we report a chalcone derivative, L2H21, as a new MD2 inhibitor, which could inhibit LPS‐induced inflammation both in vitro and in vivo. We identify that L2H21 as a direct inhibitor of MD‐2 by binding to Arg(90) and Tyr(102) residues in MD‐2 hydrophobic pocket using a series of biochemical experiments, including surface plasmon response, molecular docking and amino acid mutation. L2H21 dose dependently inhibited LPS‐induced inflammatory cytokine expression in primary macrophages. In mice with LPS intratracheal instillation, L2H21 significantly decreased LPS‐induced pulmonary oedema, pathological changes in lung tissue, protein concentration increase in bronchoalveolar lavage fluid, inflammatory cells infiltration and inflammatory gene expression, accompanied with the decrease in pulmonary TLR4/MD‐2 complex. Meanwhile, administration with L2H21 protects mice from LPS‐induced mortality at a degree of 100%. Taken together, this study identifies a new MD2 inhibitor L2H21 as a promising candidate for the treatment of acute lung injury (ALI) and sepsis, and validates that inhibition of MD‐2 is a potential therapeutic strategy for ALI.