Cargando…
Targeted inhibition of Polo‐like kinase 1 by a novel small‐molecule inhibitor induces mitotic catastrophe and apoptosis in human bladder cancer cells
Bladder cancer is a common cancer with particularly high recurrence after transurethral resection. Despite improvements in neoadjuvant chemotherapy, the outcome of patients with advanced bladder cancer has changed very little. In this study, the anti‐tumour activities of a novel Polo‐like kinase 1 (...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345669/ https://www.ncbi.nlm.nih.gov/pubmed/27878946 http://dx.doi.org/10.1111/jcmm.13018 |
_version_ | 1782513762019835904 |
---|---|
author | Zhang, Zhe Zhang, Guojun Kong, Chuize |
author_facet | Zhang, Zhe Zhang, Guojun Kong, Chuize |
author_sort | Zhang, Zhe |
collection | PubMed |
description | Bladder cancer is a common cancer with particularly high recurrence after transurethral resection. Despite improvements in neoadjuvant chemotherapy, the outcome of patients with advanced bladder cancer has changed very little. In this study, the anti‐tumour activities of a novel Polo‐like kinase 1 (PLK1) inhibitor (RO3280) was evaluated in vitro and in vivo in the bladder carcinoma cell lines 5637 and T24. MTT assays, colony‐formation assays, flow cytometry, cell morphological analysis and trypan blue exclusion assays were used to examine the proliferation, cell cycle distribution and apoptosis of bladder carcinoma cells with or without RO3280 treatment. Moreover, real‐time RT‐PCR and Western blotting were used to detect the expressions of genes that are related to these cellular processes. Our results showed that RO3280 inhibited cell growth and cell cycle progression, increased Wee1 expression and cell division cycle protein 2 phosphorylation. In addition, RO3280 induced mitotic catastrophe and apoptosis, increased cleaved PARP (poly ADP‐ribose polymerase) and caspase‐3, and decreased BubR1 expression. The in vivo assay revealed that RO3280 retarded bladder cancer xenograft growth in a nude mouse model. Although further laboratory and pre‐clinical investigations are needed to corroborate these data, our demonstration of bladder cancer growth inhibition and dissemination using a pharmacological inhibitor of PLK1 provides new opportunities for future therapeutic intervention. |
format | Online Article Text |
id | pubmed-5345669 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-53456692017-04-01 Targeted inhibition of Polo‐like kinase 1 by a novel small‐molecule inhibitor induces mitotic catastrophe and apoptosis in human bladder cancer cells Zhang, Zhe Zhang, Guojun Kong, Chuize J Cell Mol Med Original Articles Bladder cancer is a common cancer with particularly high recurrence after transurethral resection. Despite improvements in neoadjuvant chemotherapy, the outcome of patients with advanced bladder cancer has changed very little. In this study, the anti‐tumour activities of a novel Polo‐like kinase 1 (PLK1) inhibitor (RO3280) was evaluated in vitro and in vivo in the bladder carcinoma cell lines 5637 and T24. MTT assays, colony‐formation assays, flow cytometry, cell morphological analysis and trypan blue exclusion assays were used to examine the proliferation, cell cycle distribution and apoptosis of bladder carcinoma cells with or without RO3280 treatment. Moreover, real‐time RT‐PCR and Western blotting were used to detect the expressions of genes that are related to these cellular processes. Our results showed that RO3280 inhibited cell growth and cell cycle progression, increased Wee1 expression and cell division cycle protein 2 phosphorylation. In addition, RO3280 induced mitotic catastrophe and apoptosis, increased cleaved PARP (poly ADP‐ribose polymerase) and caspase‐3, and decreased BubR1 expression. The in vivo assay revealed that RO3280 retarded bladder cancer xenograft growth in a nude mouse model. Although further laboratory and pre‐clinical investigations are needed to corroborate these data, our demonstration of bladder cancer growth inhibition and dissemination using a pharmacological inhibitor of PLK1 provides new opportunities for future therapeutic intervention. John Wiley and Sons Inc. 2016-11-23 2017-04 /pmc/articles/PMC5345669/ /pubmed/27878946 http://dx.doi.org/10.1111/jcmm.13018 Text en © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Zhang, Zhe Zhang, Guojun Kong, Chuize Targeted inhibition of Polo‐like kinase 1 by a novel small‐molecule inhibitor induces mitotic catastrophe and apoptosis in human bladder cancer cells |
title | Targeted inhibition of Polo‐like kinase 1 by a novel small‐molecule inhibitor induces mitotic catastrophe and apoptosis in human bladder cancer cells |
title_full | Targeted inhibition of Polo‐like kinase 1 by a novel small‐molecule inhibitor induces mitotic catastrophe and apoptosis in human bladder cancer cells |
title_fullStr | Targeted inhibition of Polo‐like kinase 1 by a novel small‐molecule inhibitor induces mitotic catastrophe and apoptosis in human bladder cancer cells |
title_full_unstemmed | Targeted inhibition of Polo‐like kinase 1 by a novel small‐molecule inhibitor induces mitotic catastrophe and apoptosis in human bladder cancer cells |
title_short | Targeted inhibition of Polo‐like kinase 1 by a novel small‐molecule inhibitor induces mitotic catastrophe and apoptosis in human bladder cancer cells |
title_sort | targeted inhibition of polo‐like kinase 1 by a novel small‐molecule inhibitor induces mitotic catastrophe and apoptosis in human bladder cancer cells |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345669/ https://www.ncbi.nlm.nih.gov/pubmed/27878946 http://dx.doi.org/10.1111/jcmm.13018 |
work_keys_str_mv | AT zhangzhe targetedinhibitionofpololikekinase1byanovelsmallmoleculeinhibitorinducesmitoticcatastropheandapoptosisinhumanbladdercancercells AT zhangguojun targetedinhibitionofpololikekinase1byanovelsmallmoleculeinhibitorinducesmitoticcatastropheandapoptosisinhumanbladdercancercells AT kongchuize targetedinhibitionofpololikekinase1byanovelsmallmoleculeinhibitorinducesmitoticcatastropheandapoptosisinhumanbladdercancercells |