Cargando…

Genetic Dissection of a QTL Affecting Bone Geometry

Parameters of bone geometry such as width, length, and cross-sectional area are major determinants of bone strength. Although these traits are highly heritable, few genes influencing bone geometry have been identified. Here, we dissect a major quantitative trait locus (QTL) influencing femur size. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Sabik, Olivia L., Medrano, Juan F., Farber, Charles R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345717/
https://www.ncbi.nlm.nih.gov/pubmed/28082324
http://dx.doi.org/10.1534/g3.116.037424
Descripción
Sumario:Parameters of bone geometry such as width, length, and cross-sectional area are major determinants of bone strength. Although these traits are highly heritable, few genes influencing bone geometry have been identified. Here, we dissect a major quantitative trait locus (QTL) influencing femur size. This QTL was originally identified in an F2 cross between the C57BL/6J-hg/hg (HG) and CAST/EiJ strains and was referred to as femur length in high growth mice 2 (Feml2). Feml2 was located on chromosome (Chr.) 9 at ∼20 cM. Here, we show that the HG.CAST-(D9Mit249-D9Mit133)/Ucd congenic strain captures Feml2. In an F2 congenic cross, we fine-mapped the location of Feml2 to an ∼6 Mbp region extending from 57.3 to 63.3 Mbp on Chr. 9. We have identified candidates by mining the complete genome sequence of CAST/EiJ and through allele-specific expression (ASE) analysis of growth plates in C57BL/6J × CAST/EiJ F1 hybrids. Interestingly, we also find that the refined location of Feml2 overlaps a cluster of six independent genome-wide associations for human height. This work provides the foundation for the identification of novel genes affecting bone geometry.