Cargando…
Iterative free-energy optimization for recurrent neural networks (INFERNO)
The intra-parietal lobe coupled with the Basal Ganglia forms a working memory that demonstrates strong planning capabilities for generating robust yet flexible neuronal sequences. Neurocomputational models however, often fails to control long range neural synchrony in recurrent spiking networks due...
Autores principales: | Pitti, Alexandre, Gaussier, Philippe, Quoy, Mathias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345841/ https://www.ncbi.nlm.nih.gov/pubmed/28282439 http://dx.doi.org/10.1371/journal.pone.0173684 |
Ejemplares similares
-
Neural model for learning-to-learn of novel task sets in the motor domain
por: Pitti, Alexandre, et al.
Publicado: (2013) -
Modeling the Minimal Newborn's Intersubjective Mind: The Visuotopic-Somatotopic Alignment Hypothesis in the Superior Colliculus
por: Pitti, Alexandre, et al.
Publicado: (2013) -
Brain-inspired model for early vocal learning and correspondence matching using free-energy optimization
por: Pitti, Alexandre, et al.
Publicado: (2021) -
Digital computing through randomness and order in neural networks
por: Pitti, Alexandre, et al.
Publicado: (2022) -
Spatio-Temporal Tolerance of Visuo-Tactile Illusions in Artificial Skin by Recurrent Neural Network with Spike-Timing-Dependent Plasticity
por: Pitti, Alexandre, et al.
Publicado: (2017)