Cargando…
Imputation for transcription factor binding predictions based on deep learning
Understanding the cell-specific binding patterns of transcription factors (TFs) is fundamental to studying gene regulatory networks in biological systems, for which ChIP-seq not only provides valuable data but is also considered as the gold standard. Despite tremendous efforts from the scientific co...
Autores principales: | Qin, Qian, Feng, Jianxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345877/ https://www.ncbi.nlm.nih.gov/pubmed/28234893 http://dx.doi.org/10.1371/journal.pcbi.1005403 |
Ejemplares similares
-
Base-resolution prediction of transcription factor binding signals by a deep learning framework
por: Zhang, Qinhu, et al.
Publicado: (2022) -
An autoencoder-based deep learning method for genotype imputation
por: Song, Meng, et al.
Publicado: (2022) -
Evaluation methodology for deep learning imputation models
por: Boursalie, Omar, et al.
Publicado: (2022) -
SemImput: Bridging Semantic Imputation with Deep Learning for Complex Human Activity Recognition
por: Razzaq, Muhammad Asif, et al.
Publicado: (2020) -
Deep Learning Methods for Omics Data Imputation
por: Huang, Lei, et al.
Publicado: (2023)