Cargando…

Deubiquitinase USP9X deubiquitinates β-catenin and promotes high grade glioma cell growth

β-catenin is a crucial signal transduction molecule in the Wnt/β-catenin signal pathway, and increased β-catenin expression has consistently been found in high grade gliomas. However, the mechanisms responsible for β-catenin overexpression have remained elusive. Here we show that the deubiquitinase...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Bo, Zhang, Shiming, Wang, Zhihao, Yang, Chunxu, Ouyang, Wen, Zhou, Fuxiang, Zhou, Yunfeng, Xie, Conghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5346732/
https://www.ncbi.nlm.nih.gov/pubmed/27783990
http://dx.doi.org/10.18632/oncotarget.12819
Descripción
Sumario:β-catenin is a crucial signal transduction molecule in the Wnt/β-catenin signal pathway, and increased β-catenin expression has consistently been found in high grade gliomas. However, the mechanisms responsible for β-catenin overexpression have remained elusive. Here we show that the deubiquitinase USP9X stabilizes β-catenin and thereby promotes high grade glioma cell growth. USP9X binds β-catenin and removes the Lys 48-linked polyubiquitin chains that normally mark β-catenin for proteasomal degradation. Increased USP9X expression correlates with increased β-catenin protein in high grade glioma tissues. Moreover, patients with high grade glioma overexpressing USP9X have a poor prognosis. Knockdown of USP9X suppresses cell proliferation, inhibits G1/S phase conversion, and induces apoptosis in U251 and A172 cells. Interestingly, c-Myc and cyclinD1, which are important downstream target genes in the Wnt/β-catenin signal pathway, also show decreased expression in cells with siRNA-mediated down-regulation of USP9X. Down-regulation of USP9X also consistently inhibits the tumorigenicity of primary glioma cells in vivo. In summary, these results indicate that USP9X stabilizes β-catenin and activates Wnt/β-catenin signal pathway to promote glioma cell proliferation and survival. USP9X could also potentially be a novel therapeutic target for high grade gliomas.