Cargando…
The enzootic life-cycle of Borrelia burgdorferi (sensu lato) and tick-borne rickettsiae: an epidemiological study on wild-living small mammals and their ticks from Saxony, Germany
BACKGROUND: Borrelia burgdorferi (sensu lato) and rickettsiae of the spotted fever group are zoonotic tick-borne pathogens. While small mammals are confirmed reservoirs for certain Borrelia spp., little is known about the reservoirs for tick-borne rickettsiae. Between 2012 and 2014, ticks were colle...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5346851/ https://www.ncbi.nlm.nih.gov/pubmed/28285593 http://dx.doi.org/10.1186/s13071-017-2053-4 |
Sumario: | BACKGROUND: Borrelia burgdorferi (sensu lato) and rickettsiae of the spotted fever group are zoonotic tick-borne pathogens. While small mammals are confirmed reservoirs for certain Borrelia spp., little is known about the reservoirs for tick-borne rickettsiae. Between 2012 and 2014, ticks were collected from the vegetation and small mammals which were trapped in Saxony, Germany. DNA extracted from ticks and the small mammals’ skin was analyzed for the presence of Rickettsia spp. and B. burgdorferi (s.l.) by qPCR targeting the gltA and p41 genes, respectively. Partial sequencing of the rickettsial ompB gene and an MLST of B. burgdorferi (s.l.) were conducted for species determination. RESULTS: In total, 673 small mammals belonging to eight species (Apodemus agrarius, n = 7; A. flavicollis, n = 214; Microtus arvalis, n = 8; Microtus agrestis, n = 1; Mustela nivalis, n = 2; Myodes glareolus, n = 435; Sorex araneus, n = 5; and Talpa europaea, n = 1) were collected and examined. In total, 916 questing ticks belonging to three species (Ixodes ricinus, n = 741; Dermacentor reticulatus, n = 174; and I. trianguliceps, n = 1) were collected. Of these, 474 ticks were further investigated. The prevalence for Rickettsia spp. and B. burgdorferi (s.l.) in the investigated small mammals was 25.3 and 31.2%, respectively. The chance of encountering Rickettsia spp. in M. glareolus was seven times higher for specimens infested with D. reticulatus than for those which were free of D. reticulatus (OR: 7.0; 95% CI: 3.3–14.7; P < 0.001). In total, 11.4% of questing I. ricinus and 70.5% of D. reticulatus were positive for Rickettsia spp. DNA of B. burgdorferi (s.l.) was detected only in I. ricinus (5.5%). Sequence analysis revealed 9 R. helvetica, 5 R. raoultii, and 1 R. felis obtained from 15 small mammal samples. CONCLUSION: Small mammals may serve as reservoirs for Rickettsia spp. and B. burgdorferi (s.l.). While the prevalence for Rickettsia spp. in M. glareolus is most likely depending on the abundance of attached D. reticulatus, the prevalence for B. burgdorferi (s.l.) in small mammals is independent of tick abundance. Dermacentor reticulatus may be the main vector of certain Rickettsia spp. but not for Borrelia spp. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-017-2053-4) contains supplementary material, which is available to authorized users. |
---|