Cargando…
Synergistic Degradation of a Hyperuricemia-Causing Metabolite Using One-Pot Enzyme-Nanozyme Cascade Reactions
Multi-enzyme cascade reactions are frequently found in living organisms, in particular when an intermediate should be eliminated. Recently, enzyme-mimic nanomaterials (nanozymes) received much attention for various applications, because they are usually more stable and cost-effective than enzymes. H...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5347090/ https://www.ncbi.nlm.nih.gov/pubmed/28287162 http://dx.doi.org/10.1038/srep44330 |
Sumario: | Multi-enzyme cascade reactions are frequently found in living organisms, in particular when an intermediate should be eliminated. Recently, enzyme-mimic nanomaterials (nanozymes) received much attention for various applications, because they are usually more stable and cost-effective than enzymes. However, enzyme-nanozyme cascade reations have not been yet extensively exploited. Therefore, in this study, we investigated one-pot enzyme-nanozyme cascade reactions using urate oxidase (UOX) and catalase-mimic gold nanoparticle nanozyme (AuNP) with the ultimate goal of treatment of hyperuricemia. UOX degrades hyperuricemia-causing uric acid, but also generates hydrogen peroxide raising several health concerns. We successfully demonstrated that one-pot UOX-AuNP cascade systems degrade uric acid more than five times faster than UOX alone, by eliminating potentially cytotoxic hydrogen peroxide, similar to enzyme-enzyme reactions. |
---|