Cargando…

Synthetic lethal interaction of cetuximab with MEK1/2 inhibition in NRAS-mutant metastatic colorectal cancer

KRAS mutations are an established predictor of lack of response to EGFR-targeted therapies in patients with metastatic colorectal cancer (mCRC). However, little is known about the role of the rarer NRAS mutations as a mechanism of primary resistance to the anti-EGFR monoclonal antibody cetuximab in...

Descripción completa

Detalles Bibliográficos
Autores principales: Queralt, Bernardo, Cuyàs, Elisabet, Bosch-Barrera, Joaquim, Massaguer, Anna, de Llorens, Rafael, Martin-Castillo, Begoña, Brunet, Joan, Salazar, Ramon, Menendez, Javier A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5347684/
https://www.ncbi.nlm.nih.gov/pubmed/27636997
http://dx.doi.org/10.18632/oncotarget.11985
Descripción
Sumario:KRAS mutations are an established predictor of lack of response to EGFR-targeted therapies in patients with metastatic colorectal cancer (mCRC). However, little is known about the role of the rarer NRAS mutations as a mechanism of primary resistance to the anti-EGFR monoclonal antibody cetuximab in wild-type KRAS mCRC. Using isogenic mCRC cells with a heterozygous knock-in of the NRAS activating mutation Q61K, we aimed to elucidate the mechanism(s) by which mutant NRAS blocks cetuximab from inhibiting mCRC growth. NRAS(Q61K/+) cells were refractory to cetuximab-induced growth inhibition. Pathway-oriented proteome profiling revealed that cetuximab-unresponsive ERK1/2 phosphorylation was the sole biomarker distinguishing cetuximab-refractory NRAS(Q61K/+) from cetuximab-sensitive NRAS(+/+) cells. We therefore employed four representative MEK1/2 inhibitors (binimetinib, trametinib, selumetinib, and pimasertib) to evaluate the therapeutic value of MEK/ERK signaling in cetuximab-refractory NRAS mutation-induced mCRC. Co-treatment with an ineffective dose of cetuximab augmented, up to more than 1,300-fold, the cytotoxic effects of pimasertib against NRAS(Q61K/+) cells. Simultaneous combination of MEK1/2 inhibitors with cetuximab resulted in extremely high and dose-dependent synthetic lethal effects, which were executed, at least in part, by exacerbated apoptotic cell death. Dynamic monitoring of real-time cell growth rates confirmed that cetuximab synergistically sensitized NRAS(Q61K/+) cellsto MEK1/2 inhibition. Our discovery of a synthetic lethal interaction of cetuximab in combination with MEK1/2 inhibition for the NRAS mutant subgroup of mCRC underscores the importance of therapeutic intervention both in the MEK-ERK and EGFR pathways to achieve maximal therapeutic efficacy against NRAS-mutant mCRC tumors.