Cargando…

Precise ERBB2 copy number assessment in breast cancer by means of molecular inversion probe array analysis

HER2/ERBB2 amplification/overexpression determines the eligibility of breast cancer patients to HER2-targeted therapy. This study evaluates the agreement between ERBB2 copy number assessment by fluorescence in situ hybridization, a standard method recommended by the American Society of Clinical Onco...

Descripción completa

Detalles Bibliográficos
Autores principales: Christgen, Matthias, van Luttikhuizen, Jana L., Raap, Mieke, Braubach, Peter, Schmidt, Lars, Jonigk, Danny, Feuerhake, Friedrich, Lehmann, Ulrich, Schlegelberger, Brigitte, Kreipe, Hans H., Steinemann, Doris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5347728/
https://www.ncbi.nlm.nih.gov/pubmed/27716627
http://dx.doi.org/10.18632/oncotarget.12421
Descripción
Sumario:HER2/ERBB2 amplification/overexpression determines the eligibility of breast cancer patients to HER2-targeted therapy. This study evaluates the agreement between ERBB2 copy number assessment by fluorescence in situ hybridization, a standard method recommended by the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP), and newly available DNA extraction-based methods. A series of n=29 formalin-fixed paraffin-embedded breast cancers were subjected to ERBB2 copy number assessment by fluorescence in situ hybridization (FISH, Vysis, Abbott). Following macrodissection of invasive breast cancer tissue and DNA extraction, ERBB2 copy number was also determined by molecular inversion probe array analysis (MIP, OncoScan, Affymetrix) and next generation sequencing combined with normalized amplicon coverage analysis (NGS/NAC, AmpliSeq, Ion Torrent). ERBB2 copy number values obtained by MIP or NGS/NAC were tightly correlated with ERBB2 copy number values obtained by conventional FISH (r(s) = 0.940 and r(s) = 0.894, P < 0.001). Using ASCO/CAP guideline-conform thresholds for categorization of breast cancers as HER2-negative, equivocal or positive, nearly perfect concordance was observed for HER2 classification by FISH and MIP (93% concordant classifications, κ = 0.87). Substantial concordance was observed for FISH and NGS/NAC (83% concordant classifications, κ = 0.62). In conclusion, MIP facilitates precise ERBB2 copy number detection and should be considered as an ancillary method for clinical HER2 testing.