Cargando…

The long noncoding RNA HOXA11 antisense induces tumor progression and stemness maintenance in cervical cancer

Recent research has focused on the impact of long noncoding RNA (lncRNA) in cervical carcinogenesis. However, whether HOXA11 antisense (HOXA11-AS) is involved in cervical cancer remains to be elucidated. In the present study, we examined HOXA11-AS expression levels in cervical cancer patients and de...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hee Jung, Eoh, Kyung Jin, Kim, Lee Kyung, Nam, Eun Ji, Yoon, Sun Och, Kim, Kun-Hong, Lee, Jae Kwan, Kim, Sang Wun, Kim, Young Tae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5347748/
https://www.ncbi.nlm.nih.gov/pubmed/27792998
http://dx.doi.org/10.18632/oncotarget.12863
Descripción
Sumario:Recent research has focused on the impact of long noncoding RNA (lncRNA) in cervical carcinogenesis. However, whether HOXA11 antisense (HOXA11-AS) is involved in cervical cancer remains to be elucidated. In the present study, we examined HOXA11-AS expression levels in cervical cancer patients and determined the relationships between HOXA11-AS expression and clinicopathological factors. We also investigated the bio-functional consequences of HOXA11-AS overexpression both in vitro and in vivo. HOXA11-AS expression was significantly greater in tissues from patients with cervical cancer than in control patients (P<0.001). Multivariate analysis showed that high HOXA11-AS was an independent prognosticator of overall survival (Hazard ratio=2.450, P=0.032). HOXA11-AS overexpression enhanced cell proliferation, migration, and tumor invasion in vitro, whereas HOXA11-AS knockdown inhibited these biologic aggressive features. These adverse changes were accompanied by characteristics of epithelial-mesenchymal transition (EMT). In vivo xenograft experiments using the siHOXA11-AS-transfected HeLa cells revealed that HOXA11-AS strongly induced tumor growth. Furthermore, we found that HOXA11-AS knockdown decreased cancer stemness and triggered the EMT program. In conclusion, HOXA11-AS overexpression correlated with poor survival in patients with cervical cancer. Thus, HOXA11-AS may be a pivotal target for exploring novel cervical cancer therapeutics.