Cargando…

Protein Surface Mimetics: Understanding How Ruthenium Tris(Bipyridines) Interact with Proteins

Protein surface mimetics achieve high‐affinity binding by exploiting a scaffold to project binding groups over a large area of solvent‐exposed protein surface to make multiple cooperative noncovalent interactions. Such recognition is a prerequisite for competitive/orthosteric inhibition of protein–p...

Descripción completa

Detalles Bibliográficos
Autores principales: Hewitt, Sarah H., Filby, Maria H., Hayes, Ed, Kuhn, Lars T., Kalverda, Arnout P., Webb, Michael E., Wilson, Andrew J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5347857/
https://www.ncbi.nlm.nih.gov/pubmed/27860106
http://dx.doi.org/10.1002/cbic.201600552
Descripción
Sumario:Protein surface mimetics achieve high‐affinity binding by exploiting a scaffold to project binding groups over a large area of solvent‐exposed protein surface to make multiple cooperative noncovalent interactions. Such recognition is a prerequisite for competitive/orthosteric inhibition of protein–protein interactions (PPIs). This paper describes biophysical and structural studies on ruthenium(II) tris(bipyridine) surface mimetics that recognize cytochrome (cyt) c and inhibit the cyt c/cyt c peroxidase (CCP) PPI. Binding is electrostatically driven, with enhanced affinity achieved through enthalpic contributions thought to arise from the ability of the surface mimetics to make a greater number of noncovalent interactions than CCP with surface‐exposed basic residues on cyt c. High‐field natural abundance (1)H,(15)N HSQC NMR experiments are consistent with surface mimetics binding to cyt c in similar manner to CCP. This provides a framework for understanding recognition of proteins by supramolecular receptors and informing the design of ligands superior to the protein partners upon which they are inspired.