Cargando…
Late-stage inhibition of autophagy enhances calreticulin surface exposure
Calreticulin (CRT) exposure on the cell surface is essential for inducing immunogenic cell death by chemotherapy. Recent studies have shown conflicting effects of chemotherapy-induced autophagy on CRT exposure in cancer cells. Our data revealed that surface-exposed CRT (Ecto-CRT) emission was attenu...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348359/ https://www.ncbi.nlm.nih.gov/pubmed/27825129 http://dx.doi.org/10.18632/oncotarget.13099 |
Sumario: | Calreticulin (CRT) exposure on the cell surface is essential for inducing immunogenic cell death by chemotherapy. Recent studies have shown conflicting effects of chemotherapy-induced autophagy on CRT exposure in cancer cells. Our data revealed that surface-exposed CRT (Ecto-CRT) emission was attenuated by inhibition of autophagy at early stages; however, inhibition of autophagy at late stages resulted in increased Ecto-CRT. Furthermore, neither autophagy activation nor endoplasmic reticulum (ER) stress induction alone was sufficient for CRT surface exposure. Moreover, chemotherapeutic agents that only activated autophagy without inducing ER stress could not increase Ecto-CRT; therefore, combined use of an autophagy activator and ER stress inducer could effectively promote CRT translocation to the plasma membrane. Together, our results highlight the potential of the combined use of ER stress inducers and autophagy late-stage inhibitors to reestablish and strengthen both the CRT exposure and immunogenicity of chemotherapeutic agents induced death cells. |
---|