Cargando…

Circular RNAs and their associations with breast cancer subtypes

Circular RNAs (circRNAs) are highly stable forms of non-coding RNAs with diverse biological functions. They are implicated in modulation of gene expression thus affecting various cellular and disease processes. Based on existing bioinformatics approaches, we developed a comprehensive workflow called...

Descripción completa

Detalles Bibliográficos
Autores principales: Nair, Asha A., Niu, Nifang, Tang, Xiaojia, Thompson, Kevin J., Wang, Liewei, Kocher, Jean-Pierre, Subramanian, Subbaya, Kalari, Krishna R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348369/
https://www.ncbi.nlm.nih.gov/pubmed/27829232
http://dx.doi.org/10.18632/oncotarget.13134
Descripción
Sumario:Circular RNAs (circRNAs) are highly stable forms of non-coding RNAs with diverse biological functions. They are implicated in modulation of gene expression thus affecting various cellular and disease processes. Based on existing bioinformatics approaches, we developed a comprehensive workflow called Circ-Seq to identify and report expressed circRNAs. Circ-Seq also provides informative genomic annotation along circRNA fused junctions thus allowing prioritization of circRNA candidates. We applied Circ-Seq first to RNA-sequence data from breast cancer cell lines and validated one of the large circRNAs identified. Circ-Seq was then applied to a larger cohort of breast cancer samples (n = 885) provided by The Cancer Genome Atlas (TCGA), including tumors and normal-adjacent tissue samples. Notably, circRNA results reveal that normal-adjacent tissues in estrogen receptor positive (ER+) subtype have relatively higher numbers of circRNAs than tumor samples in TCGA. Similar phenomenon of high circRNA numbers were observed in normal breast-mammary tissues from the Genotype-Tissue Expression (GTEx) project. Finally, we observed that number of circRNAs in normal-adjacent samples of ER+ subtype is inversely correlated to the risk-of-relapse proliferation (ROR-P) score for proliferating genes, suggesting that circRNA frequency may be a marker for cell proliferation in breast cancer. The Circ-Seq workflow will function for both single and multi-threaded compute environments. We believe that Circ-Seq will be a valuable tool to identify circRNAs useful in the diagnosis and treatment of other cancers and complex diseases.