Cargando…
Preclinical evaluation of the safety and pathogenicity of a live attenuated recombinant influenza A/H7N9 seed strain and corresponding MF59-adjuvanted split vaccine
Developing a safe and effective H7N9 influenza vaccine was initiated in early spring 2013, following human infections with a novel avian influenza A (H7N9) virus. In this study, a candidate H7N9 vaccine seed strain is produced using reverse genetics, with HA and NA derived from a human H7N9 virus an...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348373/ https://www.ncbi.nlm.nih.gov/pubmed/27768591 http://dx.doi.org/10.18632/oncotarget.12746 |
Sumario: | Developing a safe and effective H7N9 influenza vaccine was initiated in early spring 2013, following human infections with a novel avian influenza A (H7N9) virus. In this study, a candidate H7N9 vaccine seed strain is produced using reverse genetics, with HA and NA derived from a human H7N9 virus and the remaining genes from the PR8 backbone virus which grows well in eggs. We verified that the virulence and transmissibility of the recombinant H7N9 vaccine seed strain were decreased as compared to wild-type H7N9 virus, to levels comparable with PR8. Using the seed virus, we produced a monovalent split influenza A (H7N9) MF59-adjuvanted vaccine that was immunogenic in mice. Our H7N9 vaccine is selected for clinical investigation and potential human use. To assess the safety of our H7N9 vaccine, we performed acute toxicity, repeated dose toxicity and active systemic anaphylaxis tests. Our results showed that, under the conditions used in this study, the NOEAL (no obvious adverse effect level) was 30 μg/0.5 mL. |
---|