Cargando…

Photocatalytic degradation of atrazine herbicide with Illuminated Fe(+3)-TiO(2) Nanoparticles

BACKGROUND: Atrazine is a herbicide that is widely used to control broadleaf and grassy weeds for growing many crops especially in maize production. It is a frequently detected herbicide in many groundwater resources. This study aimed to assess the feasibility of using ultraviolet radiation UV and f...

Descripción completa

Detalles Bibliográficos
Autores principales: Shamsedini, Narges, Dehghani, Mansooreh, Nasseri, Simin, Baghapour, Mohammad Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348812/
https://www.ncbi.nlm.nih.gov/pubmed/28293428
http://dx.doi.org/10.1186/s40201-017-0270-6
Descripción
Sumario:BACKGROUND: Atrazine is a herbicide that is widely used to control broadleaf and grassy weeds for growing many crops especially in maize production. It is a frequently detected herbicide in many groundwater resources. This study aimed to assess the feasibility of using ultraviolet radiation UV and fortified nanoparticles of titanium dioxide (TiO(2)) doped with trivalent iron to remove atrazine from aqueous phase and determin the removal efficiency under the optimal conditions. RESULTS: The results of this study demonstrated that the maximum atrazine removal rate was at pH = 11 in the presence of Fe(+ 3)-TiO(2) catalyst =25 mg/L and the initial concentration of atrazine equal to 10 mg/L. As the reaction time increased, the removal rate of herbicide increased as well. Atrazine removal rate was enhanced by the effect of UV radiation on catalyst activation in Fe(+3)-TiO(2)/UV process. It was also revealed that pH has no significant effect on atrazine removal efficiency (p > 0.05). CONCLUSION: Based on the data obtained in this study, atrazine removal efficiency was increased by increasing pH, initial atrazine concentration, catalyst, and contact time. The results also showed Fe(+3)-TiO(2)/UV process was an appropriate method to reduce atrazine in contaminated water resources. In conclusion, Fe(+3)-TiO(2)/UV process may enhance the rate of atrazine reduction in highly polluted water resources (more than 99%).