Cargando…

Where antibiotic resistance mutations meet quorum-sensing

We do not need to rehearse the grim story of the global rise of antibiotic resistant microbes. But what if it were possible to control the rate with which antibiotic resistance evolves by de novo mutation? It seems that some bacteria may already do exactly that: they modify the rate at which they mu...

Descripción completa

Detalles Bibliográficos
Autores principales: Krašovec, Rok, Belavkin, Roman V., Aston, John A., Channon, Alastair, Aston, Elizabeth, Rash, Bharat M., Kadirvel, Manikandan, Forbes, Sarah, Knight, Christopher G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shared Science Publishers OG 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349158/
https://www.ncbi.nlm.nih.gov/pubmed/28357250
http://dx.doi.org/10.15698/mic2014.07.158
Descripción
Sumario:We do not need to rehearse the grim story of the global rise of antibiotic resistant microbes. But what if it were possible to control the rate with which antibiotic resistance evolves by de novo mutation? It seems that some bacteria may already do exactly that: they modify the rate at which they mutate to antibiotic resistance dependent on their biological environment. In our recent study [Krašovec, et al. Nat. Commun. (2014), 5, 3742] we find that this modification depends on the density of the bacterial population and cell-cell interactions (rather than, for instance, the level of stress). Specifically, the wild-type strains of Escherichia coli we used will, in minimal glucose media, modify their rate of mutation to rifampicin resistance according to the density of wild-type cells. Intriguingly, the higher the density, the lower the mutation rate (Figure 1). Why this novel density-dependent ‘mutation rate plasticity’ (DD-MRP) occurs is a question at several levels. Answers are currently fragmentary, but involve the quorum-sensing gene luxS and its role in the activated methyl cycle.