Cargando…

Live fast, die soon: cell cycle progression and lifespan in yeast cells

Our understanding of lifespan has benefited enormously from the study of a simple model, the yeast Saccharomyces cerevisiae. Although a unicellular organism, yeasts undergo many of the processes directly related with aging that to some extent are conserved in mammalian cells. Nutrient-limiting condi...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiménez, Javier, Bru, Samuel, Ribeiro, Mariana, Clotet, Josep
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Shared Science Publishers OG 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349179/
https://www.ncbi.nlm.nih.gov/pubmed/28357278
http://dx.doi.org/10.15698/mic2015.03.191
Descripción
Sumario:Our understanding of lifespan has benefited enormously from the study of a simple model, the yeast Saccharomyces cerevisiae. Although a unicellular organism, yeasts undergo many of the processes directly related with aging that to some extent are conserved in mammalian cells. Nutrient-limiting conditions have been involved in lifespan extension, especially in the case of caloric restriction, which also has a direct impact on cell cycle progression. In fact, other environmental stresses (osmotic, oxidative) that interfere with normal cell cycle progression also influence the lifespan of cells, indicating a relationship between lifespan and cell cycle control. In the present review we compile and discuss new findings related to how cell cycle progression is regulated by other nutrients. We centred this review on the analysis of phosphate, also give some attention to nitrogen, and the impact of these nutrients on lifespan.