Cargando…

Twilight reloaded: the peptide experience

The de facto commoditization of biomolecular crystallography as a result of almost disruptive instrumentation automation and continuing improvement of software allows any sensibly trained structural biologist to conduct crystallo­graphic studies of biomolecules with reasonably valid outcomes: that i...

Descripción completa

Detalles Bibliográficos
Autores principales: Weichenberger, Christian X., Pozharski, Edwin, Rupp, Bernhard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Union of Crystallography 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349433/
https://www.ncbi.nlm.nih.gov/pubmed/28291756
http://dx.doi.org/10.1107/S205979831601620X
Descripción
Sumario:The de facto commoditization of biomolecular crystallography as a result of almost disruptive instrumentation automation and continuing improvement of software allows any sensibly trained structural biologist to conduct crystallo­graphic studies of biomolecules with reasonably valid outcomes: that is, models based on properly interpreted electron density. Robust validation has led to major mistakes in the protein part of structure models becoming rare, but some depositions of protein–peptide complex structure models, which generally carry significant interest to the scientific community, still contain erroneous models of the bound peptide ligand. Here, the protein small-molecule ligand validation tool Twilight is updated to include peptide ligands. (i) The primary technical reasons and potential human factors leading to problems in ligand structure models are presented; (ii) a new method used to score peptide-ligand models is presented; (iii) a few instructive and specific examples, including an electron-density-based analysis of peptide-ligand structures that do not contain any ligands, are discussed in detail; (iv) means to avoid such mistakes and the implications for database integrity are discussed and (v) some suggestions as to how journal editors could help to expunge errors from the Protein Data Bank are provided.