Cargando…

Tailoring the electronic and magnetic properties of monolayer SnO by B, C, N, O and F adatoms

Recently, SnO has attracted more and more attention, because it is a bipolar electronic material holding great potential in the design of p-n junction. In this paper, we examine the effect of extrinsic point defects on modifying the electronic and magnetic properties of SnO using density functionals...

Descripción completa

Detalles Bibliográficos
Autores principales: Tao, Junguang, Guan, Lixiu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349556/
https://www.ncbi.nlm.nih.gov/pubmed/28291244
http://dx.doi.org/10.1038/srep44568
Descripción
Sumario:Recently, SnO has attracted more and more attention, because it is a bipolar electronic material holding great potential in the design of p-n junction. In this paper, we examine the effect of extrinsic point defects on modifying the electronic and magnetic properties of SnO using density functionals theory (DFT). The surface adatoms considered are B, C, N, O and F with a [He] core electronic configuration. All adatoms are found energetically stable. B, C, N and F adatoms will modify the band gap and introduce band gap states. In addition, our calculations show that N, B and F can introduce stable local magnetic moment to the lattice. Our results, therefore, offer a possible route to tailor the electronic and magnetic properties of SnO by surface functionalization, which will be helpful to experimentalists in improving the performance of SnO-based electronic devices and opening new avenue for its spintronics applications.