Cargando…

Acoustic effects during photosynthesis of aquatic plants enable new research opportunities

Measurements of photosynthetic processes in hydrophytes mostly involve photosynthometers, which capture the escaping gas for subsequent analysis The most common method to detect changes in the rate of photosynthetic processes is to count the series of escaping gas bubbles. The emerging bubbles are e...

Descripción completa

Detalles Bibliográficos
Autores principales: Kratochvil, Helmut G., Pollirer, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349586/
https://www.ncbi.nlm.nih.gov/pubmed/28291222
http://dx.doi.org/10.1038/srep44526
Descripción
Sumario:Measurements of photosynthetic processes in hydrophytes mostly involve photosynthometers, which capture the escaping gas for subsequent analysis The most common method to detect changes in the rate of photosynthetic processes is to count the series of escaping gas bubbles. The emerging bubbles are either simply counted or they are recorded using light barriers, which is very difficult because of their small size and often varying ascent rate. The gas bubbles generated during photosynthesis by aquatic plants produce distinctive sound pulses when leaving the plants. These acoustic side effects enable completely new and highly accurate measurements. The frequency and reaction time changes of the pulses caused by external influences are therefore accurately detectable. The precise time measurements enable registering and evaluating the curves as reactions to changes in physical or chemical environmental conditions. We show that such acoustic analyses open completely new research opportunities for plant physiology.