Cargando…

miR-1 inhibits progression of high-risk papillomavirus-associated human cervical cancer by targeting G6PD

Ectopic glucose-6-phosphate dehydrogenase (G6PD) expression may contribute to tumorigenesis in cervical cancer associated with high-risk human papillomavirus (HR-HPV 16 and 18) infections. Here, we demonstrate that microRNA-1 (miR-1) in association with AGO proteins targets G6PD in HR-HPV-infected h...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Tao, Chang, Ye-Fei, Xiao, zhangang, Mao, Rui, Tong, Jun, Chen, Bo, Liu, Guang-Cai, Hong, Ying, Chen, Hong-Lan, Kong, Shu-Yi, Huang, Yan-Mei, Xiyang, Yan-Bin, Jin, Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349900/
https://www.ncbi.nlm.nih.gov/pubmed/27861141
http://dx.doi.org/10.18632/oncotarget.13344
Descripción
Sumario:Ectopic glucose-6-phosphate dehydrogenase (G6PD) expression may contribute to tumorigenesis in cervical cancer associated with high-risk human papillomavirus (HR-HPV 16 and 18) infections. Here, we demonstrate that microRNA-1 (miR-1) in association with AGO proteins targets G6PD in HR-HPV-infected human cervical cancer cells. miR-1 inhibited expression of a reporter construct containing a putative G6PD 3′-UTR seed region and suppressed endogenous G6PD expression. Down-regulation of miR-1 increased G6PD expression in cervical cancer cells. Regression analysis revealed that miR-1 levels correlate negatively with the clinicopathologic features in HR-HPV 16/18-infected cervical cancer patients. miR-1 overexpression inhibited proliferation and promoted apoptosis in cervical cancer cells and reduced xenograft tumor growth in nude mice. Conversely, sponge-mediated miR-1 knockdown markedly increased viability and reduced apoptosis in cervical cancer cells and supported neoplasm growth. Restoration of G6PD expression partially reversed the effects of miR-1 overexpression both in vitro and in vivo. In addition, co-transfection of G6PD siRNA and miR-1 sponge partially reversed miR-1 sponge-induced reductions in cell viability and neoplasm growth. These results suggest that miR-1 suppresses the development and progression of HR-HPV 16/18-infected cervical cancer by targeting G6PD and may be a promising novel therapeutic candidate.