Cargando…
Investigating country-specific music preferences and music recommendation algorithms with the LFM-1b dataset
Recently, the LFM-1b dataset has been proposed to foster research and evaluation in music retrieval and music recommender systems, Schedl (Proceedings of the ACM International Conference on Multimedia Retrieval (ICMR). New York, 2016). It contains more than one billion music listening events created...
Autor principal: | Schedl, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5350199/ https://www.ncbi.nlm.nih.gov/pubmed/28357190 http://dx.doi.org/10.1007/s13735-017-0118-y |
Ejemplares similares
-
Emotion-aware music tower blocks (EmoMTB ): an intelligent audiovisual interface for music discovery and recommendation
por: Melchiorre, Alessandro B., et al.
Publicado: (2023) -
Global and country-specific mainstreaminess measures: Definitions, analysis, and usage for improving personalized music recommendation systems
por: Bauer, Christine, et al.
Publicado: (2019) -
Listener Modeling and Context-Aware Music Recommendation Based on Country Archetypes
por: Schedl, Markus, et al.
Publicado: (2021) -
Support the underground: characteristics of beyond-mainstream music listeners
por: Kowald, Dominik, et al.
Publicado: (2021) -
The relation of culture, socio-economics, and friendship to music preferences: A large-scale, cross-country study
por: Liu, Meijun, et al.
Publicado: (2018)