Cargando…
A review of supervised machine learning applied to ageing research
Broadly speaking, supervised machine learning is the computational task of learning correlations between variables in annotated data (the training set), and using this information to create a predictive model capable of inferring annotations for new data, whose annotations are not known. Ageing is a...
Autores principales: | Fabris, Fabio, Magalhães, João Pedro de, Freitas, Alex A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5350215/ https://www.ncbi.nlm.nih.gov/pubmed/28265788 http://dx.doi.org/10.1007/s10522-017-9683-y |
Ejemplares similares
-
Using deep learning to associate human genes with age-related diseases
por: Fabris, Fabio, et al.
Publicado: (2020) -
A new approach for interpreting Random Forest models and its application to the biology of ageing
por: Fabris, Fabio, et al.
Publicado: (2018) -
Ageing transcriptome meta-analysis reveals similarities and differences between key mammalian tissues
por: Palmer, Daniel, et al.
Publicado: (2021) -
Supervised machine learning models applied to disease diagnosis and prognosis
por: Mariani, Maria C, et al.
Publicado: (2019) -
Machine learning-based predictions of dietary restriction associations across ageing-related genes
por: Vega Magdaleno, Gustavo Daniel, et al.
Publicado: (2022)