Cargando…

Comparison of the Protective Effects of Individual Components of Particulated trans-Sialidase (PTCTS), PTC and TS, against High Cholesterol Diet-Induced Atherosclerosis in Rabbits

Previous studies showed the presence of Mycoplasma pneumoniae (M. pneumoniae) and membrane-shed microparticles (MPs) in vulnerable atherosclerotic plaques. H&S Science and Biotechnology developed PTCTS, composed by natural particles from medicinal plants (PTC) combined with trans-Sialidase (TS),...

Descripción completa

Detalles Bibliográficos
Autores principales: Garavelo, Shérrira M., Higuchi, Maria de Lourdes, Pereira, Jaqueline J., Reis, Marcia M., Kawakami, Joyce T., Ikegami, Renata N., Palomino, Suely A. P., Wadt, Nilsa S. Y., Agouni, Abdelali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5350429/
https://www.ncbi.nlm.nih.gov/pubmed/28337456
http://dx.doi.org/10.1155/2017/7212985
Descripción
Sumario:Previous studies showed the presence of Mycoplasma pneumoniae (M. pneumoniae) and membrane-shed microparticles (MPs) in vulnerable atherosclerotic plaques. H&S Science and Biotechnology developed PTCTS, composed by natural particles from medicinal plants (PTC) combined with trans-Sialidase (TS), to combat MPs and Mycoplasma pneumoniae. Our aim was to determine the effects of the different components of PTCTS in a rabbit model of atherosclerosis. Rabbits were fed with high cholesterol diet for 12 weeks and treated during the last 6 weeks with either vehicle, PTC, TS, or PTCTS. Lipid profile and quantification of MPs positive for Mycoplasma pneumoniae and oxidized LDL antigens were carried out. Aortas and organs were then histologically analyzed. PTCTS reduced circulating MPs positive for Mycoplasma pneumoniae and oxidized LDL antigens, reduced the plaque area in the abdominal aorta, and caused positive remodeling of the ascendant aorta. PTC caused positive remodeling and reduced plaque area in the abdominal aorta; however, TS had a lipid lowering effect. PTCTS components combined were more effective against atherosclerosis than individual components. Our data reinforce the infectious theory of atherosclerosis and underscore the potential role of circulating MPs. Therefore, the removal of Mycoplasma-derived MPs could be a new therapeutic approach in the treatment of atherosclerosis.