Cargando…
Plaques Formed by Mutagenized Viral Populations Have Elevated Coinfection Frequencies
The plaque assay is a common technique used to measure virus concentrations and is based upon the principle that each plaque represents a single infectious unit. As such, the number of plaques is expected to correlate linearly with the virus dilution plated, and each plaque should be formed by a sin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5350468/ https://www.ncbi.nlm.nih.gov/pubmed/28292984 http://dx.doi.org/10.1128/mBio.02020-16 |
_version_ | 1782514666637885440 |
---|---|
author | Aguilera, Elizabeth R. Erickson, Andrea K. Jesudhasan, Palmy R. Robinson, Christopher M. Pfeiffer, Julie K. |
author_facet | Aguilera, Elizabeth R. Erickson, Andrea K. Jesudhasan, Palmy R. Robinson, Christopher M. Pfeiffer, Julie K. |
author_sort | Aguilera, Elizabeth R. |
collection | PubMed |
description | The plaque assay is a common technique used to measure virus concentrations and is based upon the principle that each plaque represents a single infectious unit. As such, the number of plaques is expected to correlate linearly with the virus dilution plated, and each plaque should be formed by a single founder virus. Here, we examined whether more than one virus can contribute to plaque formation. By using genetic and phenotypic assays with genetically marked polioviruses, we found that multiple parental viruses are present in 5 to 7% of plaques, even at an extremely low multiplicity of infection. We demonstrated through visual and biophysical assays that, like many viral stocks, our viral stocks contain both single particles and aggregates. These data suggest that aggregated virions are capable of inducing coinfection and chimeric plaque formation. In fact, inducing virion aggregation via exposure to low pH increased coinfection in a flow cytometry-based assay. We hypothesized that plaques generated by viruses with high mutation loads may have higher coinfection frequencies due to processes restoring fitness, such as complementation and recombination. Indeed, we found that coinfection frequency correlated with mutation load, with 17% chimeric plaque formation for heavily mutagenized viruses. Importantly, the frequency of chimeric plaques may be underestimated by up to threefold, since coinfection with the same parental virus cannot be scored in our assay. This work indicates that more than one virus can contribute to plaque formation and that coinfection may assist plaque formation in situations where the amount of genome damage is high. |
format | Online Article Text |
id | pubmed-5350468 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-53504682017-03-17 Plaques Formed by Mutagenized Viral Populations Have Elevated Coinfection Frequencies Aguilera, Elizabeth R. Erickson, Andrea K. Jesudhasan, Palmy R. Robinson, Christopher M. Pfeiffer, Julie K. mBio Research Article The plaque assay is a common technique used to measure virus concentrations and is based upon the principle that each plaque represents a single infectious unit. As such, the number of plaques is expected to correlate linearly with the virus dilution plated, and each plaque should be formed by a single founder virus. Here, we examined whether more than one virus can contribute to plaque formation. By using genetic and phenotypic assays with genetically marked polioviruses, we found that multiple parental viruses are present in 5 to 7% of plaques, even at an extremely low multiplicity of infection. We demonstrated through visual and biophysical assays that, like many viral stocks, our viral stocks contain both single particles and aggregates. These data suggest that aggregated virions are capable of inducing coinfection and chimeric plaque formation. In fact, inducing virion aggregation via exposure to low pH increased coinfection in a flow cytometry-based assay. We hypothesized that plaques generated by viruses with high mutation loads may have higher coinfection frequencies due to processes restoring fitness, such as complementation and recombination. Indeed, we found that coinfection frequency correlated with mutation load, with 17% chimeric plaque formation for heavily mutagenized viruses. Importantly, the frequency of chimeric plaques may be underestimated by up to threefold, since coinfection with the same parental virus cannot be scored in our assay. This work indicates that more than one virus can contribute to plaque formation and that coinfection may assist plaque formation in situations where the amount of genome damage is high. American Society for Microbiology 2017-03-14 /pmc/articles/PMC5350468/ /pubmed/28292984 http://dx.doi.org/10.1128/mBio.02020-16 Text en Copyright © 2017 Aguilera et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Aguilera, Elizabeth R. Erickson, Andrea K. Jesudhasan, Palmy R. Robinson, Christopher M. Pfeiffer, Julie K. Plaques Formed by Mutagenized Viral Populations Have Elevated Coinfection Frequencies |
title | Plaques Formed by Mutagenized Viral Populations Have Elevated Coinfection Frequencies |
title_full | Plaques Formed by Mutagenized Viral Populations Have Elevated Coinfection Frequencies |
title_fullStr | Plaques Formed by Mutagenized Viral Populations Have Elevated Coinfection Frequencies |
title_full_unstemmed | Plaques Formed by Mutagenized Viral Populations Have Elevated Coinfection Frequencies |
title_short | Plaques Formed by Mutagenized Viral Populations Have Elevated Coinfection Frequencies |
title_sort | plaques formed by mutagenized viral populations have elevated coinfection frequencies |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5350468/ https://www.ncbi.nlm.nih.gov/pubmed/28292984 http://dx.doi.org/10.1128/mBio.02020-16 |
work_keys_str_mv | AT aguileraelizabethr plaquesformedbymutagenizedviralpopulationshaveelevatedcoinfectionfrequencies AT ericksonandreak plaquesformedbymutagenizedviralpopulationshaveelevatedcoinfectionfrequencies AT jesudhasanpalmyr plaquesformedbymutagenizedviralpopulationshaveelevatedcoinfectionfrequencies AT robinsonchristopherm plaquesformedbymutagenizedviralpopulationshaveelevatedcoinfectionfrequencies AT pfeifferjuliek plaquesformedbymutagenizedviralpopulationshaveelevatedcoinfectionfrequencies |