Cargando…

Prevalence of chronic kidney disease and risk factors for its progression: A cross-sectional comparison of Indians living in Indian versus U.S. cities

BACKGROUND: While data from the latter part of the twentieth century consistently showed that immigrants to high-income countries faced higher cardio-metabolic risk than their counterparts in low- and middle-income countries, urbanization and associated lifestyle changes may be changing these patter...

Descripción completa

Detalles Bibliográficos
Autores principales: Anand, Shuchi, Kondal, Dimple, Montez-Rath, Maria, Zheng, Yuanchao, Shivashankar, Roopa, Singh, Kalpana, Gupta, Priti, Gupta, Ruby, Ajay, Vamadevan S., Mohan, Viswanathan, Pradeepa, Rajendra, Tandon, Nikhil, Ali, Mohammed K., Narayan, K. M. Venkat, Chertow, Glenn M., Kandula, Namratha, Prabhakaran, Dorairaj, Kanaya, Alka M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5351850/
https://www.ncbi.nlm.nih.gov/pubmed/28296920
http://dx.doi.org/10.1371/journal.pone.0173554
Descripción
Sumario:BACKGROUND: While data from the latter part of the twentieth century consistently showed that immigrants to high-income countries faced higher cardio-metabolic risk than their counterparts in low- and middle-income countries, urbanization and associated lifestyle changes may be changing these patterns, even for conditions considered to be advanced manifestations of cardio-metabolic disease (e.g., chronic kidney disease [CKD]). METHODS AND FINDINGS: Using cross-sectional data from the Center for cArdiometabolic Risk Reduction in South Asia (CARRS, n = 5294) and Mediators of Atherosclerosis in South Asians Living in America (MASALA, n = 748) studies, we investigated whether prevalence of CKD is similar among Indians living in Indian and U.S. cities. We compared crude, age-, waist-to-height ratio-, and diabetes- adjusted CKD prevalence difference. Among participants identified to have CKD, we compared management of risk factors for its progression. Overall age-adjusted prevalence of CKD was similar in MASALA (14.0% [95% CI 11.8–16.3]) compared with CARRS (10.8% [95% CI 10.0–11.6]). Among men the prevalence difference was low (prevalence difference 1.8 [95% CI -1.6,5.3]) and remained low after adjustment for age, waist-to-height ratio, and diabetes status (-0.4 [-3.2,2.5]). Adjusted prevalence difference was higher among women (prevalence difference 8.9 [4.8,12.9]), but driven entirely by a higher prevalence of albuminuria among women in MASALA. Severity of CKD—-i.e., degree of albuminuria and proportion of participants with reduced glomerular filtration fraction-—was higher in CARRS for both men and women. Fewer participants with CKD in CARRS were effectively treated. 4% of CARRS versus 51% of MASALA participants with CKD had A1c < 7%; and 7% of CARRS versus 59% of MASALA participants blood pressure < 140/90 mmHg. Our analysis applies only to urban populations. Demographic—-particularly educational attainment—-differences among participants in the two studies are a potential source of bias. CONCLUSIONS: Prevalence of CKD among Indians living in Indian and U.S. cities is similar. Persons with CKD living in Indian cities face higher likelihood of experiencing end-stage renal disease since they have more severe kidney disease and little evidence of risk factor management.