Cargando…

Upregulation of microRNA-524-5p enhances the cisplatin sensitivity of gastric cancer cells by modulating proliferation and metastasis via targeting SOX9

Cisplatin-based chemotherapy is the most commonly used treatment regimen for gastric cancer (GC), however, the resistance to cisplatin represents the key limitation for the therapeutic efficacy. Aberrant expression of MiR-524-5p appears to be involves in tumorigenesis and chemoresistance. However, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jing, Xue, Xiaofeng, Hong, Han, Qin, Mingde, Zhou, Jin, Sun, Qing, Liang, Hansi, Gao, Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5352179/
https://www.ncbi.nlm.nih.gov/pubmed/27880941
http://dx.doi.org/10.18632/oncotarget.13479
Descripción
Sumario:Cisplatin-based chemotherapy is the most commonly used treatment regimen for gastric cancer (GC), however, the resistance to cisplatin represents the key limitation for the therapeutic efficacy. Aberrant expression of MiR-524-5p appears to be involves in tumorigenesis and chemoresistance. However, the mechanism by which miR-524-5p mediates effects of cisplatin treatment in GC remains poorly understood. Expressions of MiR-524-5p was detected in GC tissues and cell lines by qRT-PCR. Cell proliferation was observed by MTT assay; Cell migration was detected by transwell migration and invasion assay. The targeting protein of miR-524-5p was identified by luciferase reporter assay and western blot. We found that downregulation of miR-524-5p in GC tissues and cell lines. SC-M1 and AZ521 cells resistant to cisplatin expressed low levels of miR-524-5p in comparison to the sensitive parental cells. Overexpression of miR-524-5p expression in SC-M1 and AZ521 cells inhibited cell proliferation, migration, and invasion, and conferred sensitivity to cisplatin-resistant GC cells. Subsequently, we identified SOX9 as a functional target protein of miR-524-5p and found that SOX9 overexpression could counteracts the chemosensitizing effects of miR-524-5p. These results provide novel insight into the regulation of GC tumorigenesis and progression by miRNAs. Restoration of miR-524-5p may have therapeutic potential against GC.