Cargando…
Oligo kernels for datamining on biological sequences: a case study on prokaryotic translation initiation sites
BACKGROUND: Kernel-based learning algorithms are among the most advanced machine learning methods and have been successfully applied to a variety of sequence classification tasks within the field of bioinformatics. Conventional kernels utilized so far do not provide an easy interpretation of the lea...
Autores principales: | Meinicke, Peter, Tech, Maike, Morgenstern, Burkhard, Merkl, Rainer |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC535353/ https://www.ncbi.nlm.nih.gov/pubmed/15511290 http://dx.doi.org/10.1186/1471-2105-5-169 |
Ejemplares similares
-
TICO: a tool for postprocessing the predictions of prokaryotic translation initiation sites
por: Tech, M., et al.
Publicado: (2006) -
An unsupervised classification scheme for improving predictions of prokaryotic TIS
por: Tech, Maike, et al.
Publicado: (2006) -
Gene prediction in metagenomic fragments: A large scale machine learning approach
por: Hoff, Katharina J, et al.
Publicado: (2008) -
Hon-yaku: a biology-driven Bayesian methodology for identifying translation initiation sites in prokaryotes
por: Makita, Yuko, et al.
Publicado: (2007) -
Cross-project HTS-datamining
por: Guba, Wolfgang, et al.
Publicado: (2011)