Cargando…
Discovering feature relevancy and dependency by kernel-guided probabilistic model-building evolution
BACKGROUND: Discovering relevant features (biomarkers) that discriminate etiologies of a disease is useful to provide biomedical researchers with candidate targets for further laboratory experimentation while saving costs; dependencies among biomarkers may suggest additional valuable information, fo...
Autores principales: | Rodriguez, Nestor, Rojas–Galeano, Sergio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353680/ https://www.ncbi.nlm.nih.gov/pubmed/28331548 http://dx.doi.org/10.1186/s13040-017-0131-y |
Ejemplares similares
-
Discovering semantic features in the literature: a foundation for building functional associations
por: Chagoyen, Monica, et al.
Publicado: (2006) -
SVM-RFE: selection and visualization of the most relevant features through non-linear kernels
por: Sanz, Hector, et al.
Publicado: (2018) -
A probabilistic model for the evolution of RNA structure
por: Holmes, Ian
Publicado: (2004) -
Probabilistic models for CRISPR spacer content evolution
por: Kupczok, Anne, et al.
Publicado: (2013) -
Estimation of Relevant Variables on High-Dimensional Biological Patterns Using Iterated Weighted Kernel Functions
por: Rojas-Galeano, Sergio, et al.
Publicado: (2008)