Cargando…
A novel benzo-heterocyclic amine derivative N30 inhibits influenza virus replication by depression of Inosine-5’-Monophospate Dehydrogenase activity
BACKGROUD: Influenza virus is still a huge threat to the world-wide public health. Host inosine-5’- monophosphate dehydrogenase (IMPDH) involved in the synthesis of guanine nucleotides, is known to be a potential target to inhibit the replication of viruses. Herein, we evaluated antiviral activity o...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353780/ https://www.ncbi.nlm.nih.gov/pubmed/28298229 http://dx.doi.org/10.1186/s12985-017-0724-6 |
Sumario: | BACKGROUD: Influenza virus is still a huge threat to the world-wide public health. Host inosine-5’- monophosphate dehydrogenase (IMPDH) involved in the synthesis of guanine nucleotides, is known to be a potential target to inhibit the replication of viruses. Herein, we evaluated antiviral activity of a benzo-heterocyclic amine derivative N30, which was designed to inhibit IMPDH. RESULTS: The results demonstrated that N30 inhibited the replication of H1N1, H3N2, influenza B viruses, including oseltamivir and amantadine resistant strains in vitro. Mechanistically, neuraminidase inhibition assay and hemagglutination inhibition assay suggested that N30 did not directly target the two envelope glycoproteins required for viral adsorption or release. Instead, the compound could depress the activity of IMPDH type II. Based on these findings, we further confirmed that N30 provided a strong inhibition on the replication of respiratory syncytial virus, coronavirus, enterovirus 71 and a diverse strains of coxsackie B virus. CONCLUSIONS: We identified the small molecule N30, as an inhibitor of IMPDH, might be a potential candidate to inhibit the replication of various viruses. |
---|