Cargando…

Renal effects of metallothionein induction by zinc in vitro and in vivo

BACKGROUND: Metallothionein (MTT) is an endogenous antioxidant that can be induced by both zinc (Zn) and ischemia. In kidneys, increased MTT expression exerts a putative protective role in diabetes and hypoxia. Our goal was to further investigate the behavior of MTT under the influence of Zn and hyp...

Descripción completa

Detalles Bibliográficos
Autores principales: Schanz, Moritz, Schaaf, Lea, Dippon, Juergen, Biegger, Dagmar, Fritz, Peter, Alscher, Mark Dominik, Kimmel, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353879/
https://www.ncbi.nlm.nih.gov/pubmed/28302075
http://dx.doi.org/10.1186/s12882-017-0503-z
_version_ 1782515221098659840
author Schanz, Moritz
Schaaf, Lea
Dippon, Juergen
Biegger, Dagmar
Fritz, Peter
Alscher, Mark Dominik
Kimmel, Martin
author_facet Schanz, Moritz
Schaaf, Lea
Dippon, Juergen
Biegger, Dagmar
Fritz, Peter
Alscher, Mark Dominik
Kimmel, Martin
author_sort Schanz, Moritz
collection PubMed
description BACKGROUND: Metallothionein (MTT) is an endogenous antioxidant that can be induced by both zinc (Zn) and ischemia. In kidneys, increased MTT expression exerts a putative protective role in diabetes and hypoxia. Our goal was to further investigate the behavior of MTT under the influence of Zn and hypoxia in vitro and in vivo. METHODS: MTT expression was measured in vitro in cell cultures of proximal tubular cells (LCC-PK1) by immune-histochemistry and real-time PCR after incubation with increasing concentrations of Zn under hypoxic and non-hypoxic conditions. In addition, in vivo studies were carried out in 54 patients to study MTT induction through Zn. This is a sub-study of a prospective, randomized, double-blind trial on prevention of contrast-media-induced nephropathy using Placebo, Zn and N-Acetylcysteine. Blood samples were obtained before and after 2 days p.o. treatment with or without Zn (60 mg). ELISA-based MTT level measurements were done to evaluate the effects of Zn administration. For in vivo analysis, we considered the ratio of MTT to baseline MTT (MTT(1)/MTT(0)) and the ratio of eGFR (eGFR(1)/eGFR(0)), correspondingly. RESULTS: In vitro quantitative immuno-histochemical analysis (IHC) and real-time PCR showed that at increasing levels of Zn (5, 10, and 15 μg/ml) led to a progressive increase of MTTs: Median (IQR) expression of IHC also increased progressively from 0.10 (0.09–0.12), 0.15 (0.12–0.18), 0.25 (0.25–0.27), 0.59 (0.48–0.70) (p < 0.0001). Median (IQR) expression of PCR: 0.59 (0.51–1.72), 1.62 (1.38–4.70), 3.58 (3.06–10.42) and 10.81 (9.24–31.47) (p < 0.0001). In contrast, hypoxia did not change MTT-levels in vitro (p > 0.05). In vivo no significant differences (p = 0.96) occurred in MTT-levels after 2 days of Zn administration compared with no Zn intake. Nevertheless, there was a significant correlation between MTT (MTT(1)/MTT(0)) and eGFR (eGFR(1)/eGFR(0)) in case of Zn administration (rho = −0.49; 95%-CI: −0.78 to −0.03; p = 0.04). CONCLUSIONS: We found that Zn did induce MTTs in vitro, whereas hypoxia had no significant impact. In contrast, no significant increase of MTTs was detected after in vivo administration of Zn. However, there was a significant negative correlation between MTT and eGFR in vivo in case of Zn administration, this could indicate a protective role of MTTs in a setting of reduced kidney function, which is possibly influenced by Zn. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00399256. Retrospectively registered 11/13/2006.
format Online
Article
Text
id pubmed-5353879
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-53538792017-03-22 Renal effects of metallothionein induction by zinc in vitro and in vivo Schanz, Moritz Schaaf, Lea Dippon, Juergen Biegger, Dagmar Fritz, Peter Alscher, Mark Dominik Kimmel, Martin BMC Nephrol Research Article BACKGROUND: Metallothionein (MTT) is an endogenous antioxidant that can be induced by both zinc (Zn) and ischemia. In kidneys, increased MTT expression exerts a putative protective role in diabetes and hypoxia. Our goal was to further investigate the behavior of MTT under the influence of Zn and hypoxia in vitro and in vivo. METHODS: MTT expression was measured in vitro in cell cultures of proximal tubular cells (LCC-PK1) by immune-histochemistry and real-time PCR after incubation with increasing concentrations of Zn under hypoxic and non-hypoxic conditions. In addition, in vivo studies were carried out in 54 patients to study MTT induction through Zn. This is a sub-study of a prospective, randomized, double-blind trial on prevention of contrast-media-induced nephropathy using Placebo, Zn and N-Acetylcysteine. Blood samples were obtained before and after 2 days p.o. treatment with or without Zn (60 mg). ELISA-based MTT level measurements were done to evaluate the effects of Zn administration. For in vivo analysis, we considered the ratio of MTT to baseline MTT (MTT(1)/MTT(0)) and the ratio of eGFR (eGFR(1)/eGFR(0)), correspondingly. RESULTS: In vitro quantitative immuno-histochemical analysis (IHC) and real-time PCR showed that at increasing levels of Zn (5, 10, and 15 μg/ml) led to a progressive increase of MTTs: Median (IQR) expression of IHC also increased progressively from 0.10 (0.09–0.12), 0.15 (0.12–0.18), 0.25 (0.25–0.27), 0.59 (0.48–0.70) (p < 0.0001). Median (IQR) expression of PCR: 0.59 (0.51–1.72), 1.62 (1.38–4.70), 3.58 (3.06–10.42) and 10.81 (9.24–31.47) (p < 0.0001). In contrast, hypoxia did not change MTT-levels in vitro (p > 0.05). In vivo no significant differences (p = 0.96) occurred in MTT-levels after 2 days of Zn administration compared with no Zn intake. Nevertheless, there was a significant correlation between MTT (MTT(1)/MTT(0)) and eGFR (eGFR(1)/eGFR(0)) in case of Zn administration (rho = −0.49; 95%-CI: −0.78 to −0.03; p = 0.04). CONCLUSIONS: We found that Zn did induce MTTs in vitro, whereas hypoxia had no significant impact. In contrast, no significant increase of MTTs was detected after in vivo administration of Zn. However, there was a significant negative correlation between MTT and eGFR in vivo in case of Zn administration, this could indicate a protective role of MTTs in a setting of reduced kidney function, which is possibly influenced by Zn. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00399256. Retrospectively registered 11/13/2006. BioMed Central 2017-03-16 /pmc/articles/PMC5353879/ /pubmed/28302075 http://dx.doi.org/10.1186/s12882-017-0503-z Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Schanz, Moritz
Schaaf, Lea
Dippon, Juergen
Biegger, Dagmar
Fritz, Peter
Alscher, Mark Dominik
Kimmel, Martin
Renal effects of metallothionein induction by zinc in vitro and in vivo
title Renal effects of metallothionein induction by zinc in vitro and in vivo
title_full Renal effects of metallothionein induction by zinc in vitro and in vivo
title_fullStr Renal effects of metallothionein induction by zinc in vitro and in vivo
title_full_unstemmed Renal effects of metallothionein induction by zinc in vitro and in vivo
title_short Renal effects of metallothionein induction by zinc in vitro and in vivo
title_sort renal effects of metallothionein induction by zinc in vitro and in vivo
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353879/
https://www.ncbi.nlm.nih.gov/pubmed/28302075
http://dx.doi.org/10.1186/s12882-017-0503-z
work_keys_str_mv AT schanzmoritz renaleffectsofmetallothioneininductionbyzincinvitroandinvivo
AT schaaflea renaleffectsofmetallothioneininductionbyzincinvitroandinvivo
AT dipponjuergen renaleffectsofmetallothioneininductionbyzincinvitroandinvivo
AT bieggerdagmar renaleffectsofmetallothioneininductionbyzincinvitroandinvivo
AT fritzpeter renaleffectsofmetallothioneininductionbyzincinvitroandinvivo
AT alschermarkdominik renaleffectsofmetallothioneininductionbyzincinvitroandinvivo
AT kimmelmartin renaleffectsofmetallothioneininductionbyzincinvitroandinvivo