Cargando…
Proton NMR characterization of intact primary and metastatic melanoma cells in 2D & 3D cultures
OBJECTIVE: To characterize the differences between the primary and metastatic melanoma cell lines grown in 2D cultures and 3D cultures. METHODS: Primary melanoma cells (WM115) and metastatic melanoma cells (WM266) extracted from a single donor was cultured in 2D as well as 3D cultures. These cells w...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353880/ https://www.ncbi.nlm.nih.gov/pubmed/28302167 http://dx.doi.org/10.1186/s40659-017-0117-8 |
_version_ | 1782515221422669824 |
---|---|
author | Ramachandran, Gokula Krishnan Yeow, Chen Hua |
author_facet | Ramachandran, Gokula Krishnan Yeow, Chen Hua |
author_sort | Ramachandran, Gokula Krishnan |
collection | PubMed |
description | OBJECTIVE: To characterize the differences between the primary and metastatic melanoma cell lines grown in 2D cultures and 3D cultures. METHODS: Primary melanoma cells (WM115) and metastatic melanoma cells (WM266) extracted from a single donor was cultured in 2D as well as 3D cultures. These cells were characterized using proton NMR spectrometry, and the qualitative chemical shifts markers were identified and discussed. RESULTS: In monolayer culture (2D), we observed one qualitative chemical shift marker for primary melanoma cells. In spheroid cultures (3D), we observed nine significant chemical shifts, of which eight markers were specific for primary melanoma spheroids, whereas the other one marker was specific to metastatic melanoma spheroids. This study suggests that the glucose accumulation and phospholipid composition vary significantly between the primary and metastatic cells lines that are obtained from a single donor and also with the cell culturing methods. 14 qualitative chemical shift markers were obtained in the comparison between monolayer culture and spheroids cultures irrespective of the differences in the cell lines. Among which 4 were unique to monolayer cultures whereas 10 chemical shifts were unique to the spheroid cultures. This study also shows that the method of cell culture would drastically affect the phospholipid composition of the cells and also depicts that the cells in spheroid culture closely resembles the cells in vivo. CONCLUSION: This study shows the high specificity of proton NMR spectrometry in characterizing cancer cell lines and also shows the variations in the glucose accumulation and phospholipid composition between the primary and metastatic melanoma cell lines from the same donor. Differences in the cell culture method does plays an important role in phospholipid composition of the cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40659-017-0117-8) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5353880 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-53538802017-03-22 Proton NMR characterization of intact primary and metastatic melanoma cells in 2D & 3D cultures Ramachandran, Gokula Krishnan Yeow, Chen Hua Biol Res Research Article OBJECTIVE: To characterize the differences between the primary and metastatic melanoma cell lines grown in 2D cultures and 3D cultures. METHODS: Primary melanoma cells (WM115) and metastatic melanoma cells (WM266) extracted from a single donor was cultured in 2D as well as 3D cultures. These cells were characterized using proton NMR spectrometry, and the qualitative chemical shifts markers were identified and discussed. RESULTS: In monolayer culture (2D), we observed one qualitative chemical shift marker for primary melanoma cells. In spheroid cultures (3D), we observed nine significant chemical shifts, of which eight markers were specific for primary melanoma spheroids, whereas the other one marker was specific to metastatic melanoma spheroids. This study suggests that the glucose accumulation and phospholipid composition vary significantly between the primary and metastatic cells lines that are obtained from a single donor and also with the cell culturing methods. 14 qualitative chemical shift markers were obtained in the comparison between monolayer culture and spheroids cultures irrespective of the differences in the cell lines. Among which 4 were unique to monolayer cultures whereas 10 chemical shifts were unique to the spheroid cultures. This study also shows that the method of cell culture would drastically affect the phospholipid composition of the cells and also depicts that the cells in spheroid culture closely resembles the cells in vivo. CONCLUSION: This study shows the high specificity of proton NMR spectrometry in characterizing cancer cell lines and also shows the variations in the glucose accumulation and phospholipid composition between the primary and metastatic melanoma cell lines from the same donor. Differences in the cell culture method does plays an important role in phospholipid composition of the cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40659-017-0117-8) contains supplementary material, which is available to authorized users. BioMed Central 2017-03-16 /pmc/articles/PMC5353880/ /pubmed/28302167 http://dx.doi.org/10.1186/s40659-017-0117-8 Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Ramachandran, Gokula Krishnan Yeow, Chen Hua Proton NMR characterization of intact primary and metastatic melanoma cells in 2D & 3D cultures |
title | Proton NMR characterization of intact primary and metastatic melanoma cells in 2D & 3D cultures |
title_full | Proton NMR characterization of intact primary and metastatic melanoma cells in 2D & 3D cultures |
title_fullStr | Proton NMR characterization of intact primary and metastatic melanoma cells in 2D & 3D cultures |
title_full_unstemmed | Proton NMR characterization of intact primary and metastatic melanoma cells in 2D & 3D cultures |
title_short | Proton NMR characterization of intact primary and metastatic melanoma cells in 2D & 3D cultures |
title_sort | proton nmr characterization of intact primary and metastatic melanoma cells in 2d & 3d cultures |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5353880/ https://www.ncbi.nlm.nih.gov/pubmed/28302167 http://dx.doi.org/10.1186/s40659-017-0117-8 |
work_keys_str_mv | AT ramachandrangokulakrishnan protonnmrcharacterizationofintactprimaryandmetastaticmelanomacellsin2d3dcultures AT yeowchenhua protonnmrcharacterizationofintactprimaryandmetastaticmelanomacellsin2d3dcultures |