Cargando…
Applying diffusion-based Markov chain Monte Carlo
We examine the performance of a strategy for Markov chain Monte Carlo (MCMC) developed by simulating a discrete approximation to a stochastic differential equation (SDE). We refer to the approach as diffusion MCMC. A variety of motivations for the approach are reviewed in the context of Bayesian ana...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354282/ https://www.ncbi.nlm.nih.gov/pubmed/28301529 http://dx.doi.org/10.1371/journal.pone.0173453 |
Sumario: | We examine the performance of a strategy for Markov chain Monte Carlo (MCMC) developed by simulating a discrete approximation to a stochastic differential equation (SDE). We refer to the approach as diffusion MCMC. A variety of motivations for the approach are reviewed in the context of Bayesian analysis. In particular, implementation of diffusion MCMC is very simple to set-up, even in the presence of nonlinear models and non-conjugate priors. Also, it requires comparatively little problem-specific tuning. We implement the algorithm and assess its performance for both a test case and a glaciological application. Our results demonstrate that in some settings, diffusion MCMC is a faster alternative to a general Metropolis-Hastings algorithm. |
---|