Cargando…
Identification of marginal causal relationships in gene networks from observational and interventional expression data
Causal network inference is an important methodological challenge in biology as well as other areas of application. Although several causal network inference methods have been proposed in recent years, they are typically applicable for only a small number of genes, due to the large number of paramet...
Autores principales: | Monneret, Gilles, Jaffrézic, Florence, Rau, Andrea, Zerjal, Tatiana, Nuel, Grégory |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354375/ https://www.ncbi.nlm.nih.gov/pubmed/28301504 http://dx.doi.org/10.1371/journal.pone.0171142 |
Ejemplares similares
-
Joint estimation of causal effects from observational and intervention gene expression data
por: Rau, Andrea, et al.
Publicado: (2013) -
A Hierarchical Poisson Log-Normal Model for Network Inference from RNA Sequencing Data
por: Gallopin, Mélina, et al.
Publicado: (2013) -
Data-based filtering for replicated high-throughput transcriptome sequencing experiments
por: Rau, Andrea, et al.
Publicado: (2013) -
Differential meta-analysis of RNA-seq data from multiple studies
por: Rau, Andrea, et al.
Publicado: (2014) -
Using Triplet Ordering Preferences for Estimating Causal Effects in the Analysis of Gene Expression Data
por: Hartmann, Alexander K., et al.
Publicado: (2017)