Cargando…

The microbial community shifts of subgingival plaque in patients with generalized aggressive periodontitis following non-surgical periodontal therapy: a pilot study

The object of this study is to characterize the bacterial community of subgingival plaque of two subjects with generalized aggressive periodontitis (GAgP) pre- and post-treatment. We picked two patients with GAgP and used high-throughput 16S rDNA sequencing. V4 hypervariable region was picked for PC...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Jing, Wang, Peng, Ge, Shaohua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354685/
https://www.ncbi.nlm.nih.gov/pubmed/27732961
http://dx.doi.org/10.18632/oncotarget.12532
Descripción
Sumario:The object of this study is to characterize the bacterial community of subgingival plaque of two subjects with generalized aggressive periodontitis (GAgP) pre- and post-treatment. We picked two patients with GAgP and used high-throughput 16S rDNA sequencing. V4 hypervariable region was picked for PCR amplification of subgingival samples. Then, the PCR products were sequenced through Illumina MiSeq platform. One month after therapy, both the clinical features and periodontal parameters improved obviously. Moreover, the composition and structure of subgingival bacterial community changed after initial periodontal therapy. Also, the composition of the subgingival microbiota was highly individualized among different patients. Bacteroidetes, Spirochaetes and Fusobacteria were related to pathogenicity of GAgP while Actinobacteria and Proteobacteria seemed associated with clinical symptoms resolution. In this study, we found the subgingival bacterial community was high in species richness but dominated by a few species or phylotypes, with significant shifts of microbiota that occurred after treatment. This study demonstrated the shift of the subgingival bacterial community before and after treatment by high-throughput 16S rDNA sequencing, and provided a concise method for analysis of microbial community for periodontal diseases.