Cargando…

Altered microRNA profiles in plasma exosomes from mesial temporal lobe epilepsy with hippocampal sclerosis

Mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) is the most common type of focal epilepsy. The present study aimed to explore the expression and functions of exosomal microRNAs in mTLE-HS. A total of 50 microRNAs were found to be differentially expressed in mTLE-HS compared with h...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Shaofeng, Zhang, Hua, Xie, Wenyan, Meng, Fangang, Zhang, Kai, Jiang, Yin, Zhang, Xin, Zhang, Jianguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354818/
https://www.ncbi.nlm.nih.gov/pubmed/27926529
http://dx.doi.org/10.18632/oncotarget.13744
Descripción
Sumario:Mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) is the most common type of focal epilepsy. The present study aimed to explore the expression and functions of exosomal microRNAs in mTLE-HS. A total of 50 microRNAs were found to be differentially expressed in mTLE-HS compared with healthy controls. Among them, 2 were increased and 48 were decreased. The 6 significant differentially expressed candidate microRNAs (miR-3613-5p, miR-4668-5p, miR-8071, miR-197-5p, miR-4322, and miR-6781-5p ) in exosome were validated. The bioinformatics analysis showed that the potential target genes of these microRNAs were involved in biological processes, molecular functions, and cellular components. Similarly, these microRNAs also affected axon guidance, pathways in cancer, regulation of the actin cytoskeleton, focal adhesion, the calcium signaling pathway, the MAPK signaling pathway, and the PI3K-Akt signaling pathway. Among 6 candidate microRNAs, miR-8071 had the best diagnostic value for mTLE-HS with 83.33% sensitivity and 96.67% specificity, and was associated with seizure severity. This study indicated that exosomal microRNAs, may be regulators for the seizure development in mTLE-HS, and can be used as potential therapeutic targets and biomarker for diagnosis in mTLE-HS.