Cargando…

Mael is essential for cancer cell survival and tumorigenesis through protection of genetic integrity

Germ line-specific genes are activated in somatic cells during tumorigenesis, and are accordingly referred to as cancer germline genes. Such genes that act on piRNA (Piwi-interacting RNA) processing play an important role in the progression of cancer cells. Here, we show that the spermatogenic trans...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Su-Hyeon, Park, Eun-Ran, Cho, Eugene, Jung, Won-Hee, Jeon, Ju-Yeon, Joo, Hyun-Yoo, Lee, Kee-Ho, Shin, Hyun-Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354889/
https://www.ncbi.nlm.nih.gov/pubmed/27926513
http://dx.doi.org/10.18632/oncotarget.13756
Descripción
Sumario:Germ line-specific genes are activated in somatic cells during tumorigenesis, and are accordingly referred to as cancer germline genes. Such genes that act on piRNA (Piwi-interacting RNA) processing play an important role in the progression of cancer cells. Here, we show that the spermatogenic transposon silencer maelstrom (Mael), a piRNA-processing factor, is required for malignant transformation and survival of cancer cells. A specific Mael isoform was distinctively overexpressed in diverse human cancer cell lines and its depletion resulted in cancer-specific cell death, characterized by apoptosis and senescence, accompanied by an increase in reactive oxygen-species and DNA damage. These biochemical changes and death phenotypes induced by Mael depletion were dependent on ATM. Interestingly Mael was essential for Myc/Ras-induced transformation, and its overexpression inhibited Ras-induced senescence. In addition, Mael repressed retrotransposon activity in cancer cells. These results suggest that Mael depletion induces ATM-dependent DNA damage, consequently leading to cell death specifically in cancer cells. Moreover, Mael possesses oncogenic potential that can protect against genetic instability.