Cargando…

MiR-30c-5p ameliorates hepatic steatosis in leptin receptor-deficient (db/db) mice via down-regulating FASN

Approximately 15–40% of the general adult population suffers from non-alcoholic fatty liver disease (NAFLD) worldwide. However, no drug is currently licensed for its treatment. In this study, we observed a significant reduction of miR-30c-5p in the liver of leptin receptor-deficient (db/db) mice. Re...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Jiahui, Li, Huaping, Nie, Xiang, Yin, Zhongwei, Zhao, Yanru, Chen, Chen, Wang, Dao Wen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355111/
https://www.ncbi.nlm.nih.gov/pubmed/28088781
http://dx.doi.org/10.18632/oncotarget.14561
Descripción
Sumario:Approximately 15–40% of the general adult population suffers from non-alcoholic fatty liver disease (NAFLD) worldwide. However, no drug is currently licensed for its treatment. In this study, we observed a significant reduction of miR-30c-5p in the liver of leptin receptor-deficient (db/db) mice. Remarkably, recombinant adeno-associated virus (rAAV)-mediated delivery of miR-30c-5p was sufficient to attenuate triglyceride accumulation and hepatic steatosis in db/db mice. Through computational prediction, KEGG analysis and Ago2 co-immunoprecipitation, we identified that miR-30c-5p directly targeted fatty acid synthase, a key enzyme in fatty acid biosynthesis. Moreover, down-regulation of FASN by siRNA attenuated some key features of NAFLD, including decreased triglyceride accumulate and lipid deposition. Our findings reveal a new role of miR-30c-5p in counterbalancing fatty acid biosynthesis, which is sufficient to attenuate triglyceride accumulation and hepatic steatosis in db/db mice.