Cargando…

The role of miR-17-92 in the miRegulatory landscape of Ewing sarcoma

MicroRNAs serve to fine-tune gene expression and play an important regulatory role in tissue specific gene networks. The identification and validation of miRNA target genes in a tissue still poses a significant problem since the presence of a seed sequence in the 3′UTR of an mRNA and its expression...

Descripción completa

Detalles Bibliográficos
Autores principales: Schwentner, Raphaela, Herrero-Martin, David, Kauer, Maximilian O, Mutz, Cornelia N, Katschnig, Anna M, Sienski, Grzegorz, Alonso, Javier, Aryee, Dave NT, Kovar, Heinrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355239/
https://www.ncbi.nlm.nih.gov/pubmed/28030800
http://dx.doi.org/10.18632/oncotarget.14091
Descripción
Sumario:MicroRNAs serve to fine-tune gene expression and play an important regulatory role in tissue specific gene networks. The identification and validation of miRNA target genes in a tissue still poses a significant problem since the presence of a seed sequence in the 3′UTR of an mRNA and its expression modulation upon ectopic expression of the miRNA do not reliably predict regulation under physiological conditions. The chimeric oncoprotein EWS-FLI1 is the driving pathogenic force in Ewing sarcoma. MiR-17-92, one of the most potent oncogenic miRNAs, was recently reported to be among the top EWS-FLI1 activated miRNAs. Using a combination of AGO2 pull-down experiments by PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation) and of RNAseq upon miRNA depletion by ectopic sponge expression, we aimed to identify the targetome of miR-17-92 in Ewing sarcoma. Intersecting both datasets we found an enrichment of PAR-CLIP hits for members of the miR-17-92 cluster in the 3′UTRs of genes up-regulated in response to mir-17-92 specific sponge expression. Strikingly, approximately a quarter of these genes annotate to the TGFB/BMP pathway, the majority mapping downstream of SMAD signaling. Testing for SMAD phosphorylation, we identify quiet but activatable TGFB signaling and cell autonomous activity of the BMP pathway resulting in the activation of the stemness regulatory transcriptional repressors ID1 and ID3. Taken together, our findings shed light on the complex miRegulatory landscape of Ewing Sarcoma pointing miR-17-92 as a key node connected to TGFB/BMP pathway.