Cargando…

Antitumor and antimetastatic activities of a novel benzothiazole-2-thiol derivative in a murine model of breast cancer

The prognosis of metastatic breast cancer is always very poor. Thus, it is urgent to develop novel drugs with less toxicity against metastatic breast cancer. A new drug (XC-591) derived from benzothiazole-2-thiol was designed and synthesized in our lab. In this study, we tried to assess effects of X...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, XiaoLin, Li, Sen, He, Yan, Ai, Ping, Wu, Shaoyong, Su, Yonglin, Li, Xiaolin, Cai, Lei, Peng, Xingchen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355312/
https://www.ncbi.nlm.nih.gov/pubmed/28060755
http://dx.doi.org/10.18632/oncotarget.14431
Descripción
Sumario:The prognosis of metastatic breast cancer is always very poor. Thus, it is urgent to develop novel drugs with less toxicity against metastatic breast cancer. A new drug (XC-591) derived from benzothiazole-2-thiol was designed and synthesized in our lab. In this study, we tried to assess effects of XC-591 treatment on primary breast cancer and pulmonary metastasis in 4T1 mice model. Furthermore, we tried to discover its possible molecular mechanism of action. MTT experiment showed XC-591 had significant anti-cancer activity on diverse cancer cells. Furthermore, XC-591 significantly suppressed the proliferation of 4T1 cells by colony formation assay. The in vivo results displayed that XC-591 could inhibit the growth and metastasis in 4T1 model. Moreover, histological analysis revealed that XC-591 treatment increased apoptosis, inhibited proliferation and angiogenesis in vivo. In addition, XC-591 did not contribute to obvious drug associated toxicity during the whole study. Molecular mechanism showed XC-591 could inhibit RhoGDI, activate caspase-3 and decrease phosphorylated Akt. The present data may be important to further explore this kind of new small-molecule inhibitor.