Cargando…

Structural Investigation of Uniform Ensembles of Self-Catalyzed GaAs Nanowires Fabricated by a Lithography-Free Technique

Structural analysis of self-catalyzed GaAs nanowires (NWs) grown on lithography-free oxide patterns is described with insight on their growth kinetics. Statistical analysis of templates and NWs in different phases of the growth reveals extremely high-dimensional uniformity due to a combination of un...

Descripción completa

Detalles Bibliográficos
Autores principales: Koivusalo, Eero, Hakkarainen, Teemu, Guina, Mircea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355414/
https://www.ncbi.nlm.nih.gov/pubmed/28314359
http://dx.doi.org/10.1186/s11671-017-1989-9
Descripción
Sumario:Structural analysis of self-catalyzed GaAs nanowires (NWs) grown on lithography-free oxide patterns is described with insight on their growth kinetics. Statistical analysis of templates and NWs in different phases of the growth reveals extremely high-dimensional uniformity due to a combination of uniform nucleation sites, lack of secondary nucleation of NWs, and self-regulated growth under the effect of nucleation antibunching. Consequently, we observed the first evidence of sub-Poissonian GaAs NW length distributions. The high phase purity of the NWs is demonstrated using complementary transmission electron microscopy (TEM) and high-resolution X-ray diffractometry (HR-XRD). It is also shown that, while NWs are to a large extent defect-free with up to 2-μm-long twin-free zincblende segments, low-temperature micro-photoluminescence spectroscopy reveals that the proportion of structurally disordered sections can be detected from their spectral properties.