Cargando…

Superconvergence of semidiscrete finite element methods for bilinear parabolic optimal control problems

In this paper, a semidiscrete finite element method for solving bilinear parabolic optimal control problems is considered. Firstly, we present a finite element approximation of the model problem. Secondly, we bring in some important intermediate variables and their error estimates. Thirdly, we deriv...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Yuelong, Hua, Yuchun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355540/
https://www.ncbi.nlm.nih.gov/pubmed/28367051
http://dx.doi.org/10.1186/s13660-017-1334-y
Descripción
Sumario:In this paper, a semidiscrete finite element method for solving bilinear parabolic optimal control problems is considered. Firstly, we present a finite element approximation of the model problem. Secondly, we bring in some important intermediate variables and their error estimates. Thirdly, we derive a priori error estimates of the approximation scheme. Finally, we obtain the superconvergence between the semidiscrete finite element solutions and projections of the exact solutions. A numerical example is presented to verify our theoretical results.