Cargando…

Method for in vitro differentiation of bone marrow mesenchymal stem cells into endothelial progenitor cells and vascular endothelial cells

Vascular development is a regulated process and is dependent on the participation and differentiation of many cell types including the proliferation and migration of vascular endothelial cells and differentiation of endothelial progenitor cells (EPCs) to mesodermal precursor cells. Thus, reconstitut...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Qihong, Zhang, Weifeng, He, Guifen, Sha, Huifang, Quan, Zhe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355713/
https://www.ncbi.nlm.nih.gov/pubmed/27878275
http://dx.doi.org/10.3892/mmr.2016.5953
Descripción
Sumario:Vascular development is a regulated process and is dependent on the participation and differentiation of many cell types including the proliferation and migration of vascular endothelial cells and differentiation of endothelial progenitor cells (EPCs) to mesodermal precursor cells. Thus, reconstitution of this process in vitro necessitates providing ambient conditions for generating and culturing EPCs in vitro and differentiating them to vascular endothelial cells. In the present study, we developed methods to differentiate bone marrow mesenchymal stem cells (MSC) into EPCs and to vascular endothelial cells. Bone marrow MSC from canines and human sources were differentiated in vitro in to EPCs. These EPCs were able to express a variety of endothelial markers following 7 days in culture. Further culturing led to the appearance of an increased number and proportion of endothelial cells. These cells were stable even after 30 generations in culture. There was a gradual loss of CD31 and increased expression of factor VIII, VEGFR and CD133. VEGF being highly angiogenic, helps in the vascular development. These results provide the basis for the possible development of vasculature in vitro conditions for biomedical applications and in vivo for organ/tissue reconstruction therapies.