Cargando…
The impact of grafted surface defects and their controlled removal on supramolecular self-assembly
We demonstrate the use of covalently modified graphite as a convenient and powerful test-bed for the versatile investigation and control of 2-D crystallization at the liquid solid interface. Grafted aryls act as surface defects and create barriers to supramolecular self-assembly. An easily tunable g...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355800/ https://www.ncbi.nlm.nih.gov/pubmed/28451139 http://dx.doi.org/10.1039/c6sc02400a |
Sumario: | We demonstrate the use of covalently modified graphite as a convenient and powerful test-bed for the versatile investigation and control of 2-D crystallization at the liquid solid interface. Grafted aryls act as surface defects and create barriers to supramolecular self-assembly. An easily tunable grafting density allows for varying the effect of such defects on supramolecular self-assembly. Finally, the defects can be locally removed, triggering monolayer reconstructions and allowing in situ investigations of thermodynamically unstable or metastable morphologies. |
---|