Cargando…
Vibrational spectroscopy reveals the initial steps of biological hydrogen evolution
[FeFe] hydrogenases are biocatalytic model systems for the exploitation and investigation of catalytic hydrogen evolution. Here, we used vibrational spectroscopic techniques to characterize, in detail, redox transformations of the [FeFe] and [4Fe4S] sub-sites of the catalytic centre (H-cluster) in a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355867/ https://www.ncbi.nlm.nih.gov/pubmed/28451119 http://dx.doi.org/10.1039/c6sc01098a |
Sumario: | [FeFe] hydrogenases are biocatalytic model systems for the exploitation and investigation of catalytic hydrogen evolution. Here, we used vibrational spectroscopic techniques to characterize, in detail, redox transformations of the [FeFe] and [4Fe4S] sub-sites of the catalytic centre (H-cluster) in a monomeric [FeFe] hydrogenase. Through the application of low-temperature resonance Raman spectroscopy, we discovered a novel metastable intermediate that is characterized by an oxidized [Fe(I)Fe(II)] centre and a reduced [4Fe4S](1+) cluster. Based on this unusual configuration, this species is assigned to the first, deprotonated H-cluster intermediate of the [FeFe] hydrogenase catalytic cycle. Providing insights into the sequence of initial reaction steps, the identification of this species represents a key finding towards the mechanistic understanding of biological hydrogen evolution. |
---|