Cargando…
Overexpression of Parkinson’s Disease-Associated Mutation LRRK2 G2019S in Mouse Forebrain Induces Behavioral Deficits and α-Synuclein Pathology
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified as an unambiguous cause of late-onset, autosomal-dominant familial Parkinson’s disease (PD) and LRRK2 mutations are the strongest genetic risk factor for sporadic PD known to date. A number of transgenic mice expressing...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355896/ https://www.ncbi.nlm.nih.gov/pubmed/28321439 http://dx.doi.org/10.1523/ENEURO.0004-17.2017 |
_version_ | 1782515688669184000 |
---|---|
author | Xiong, Yulan Neifert, Stewart Karuppagounder, Senthilkumar S. Stankowski, Jeannette N. Lee, Byoung Dae Grima, Jonathan C. Chen, Guanxing Ko, Han Seok Lee, Yunjong Swing, Debbie Tessarollo, Lino Dawson, Ted M. Dawson, Valina L. |
author_facet | Xiong, Yulan Neifert, Stewart Karuppagounder, Senthilkumar S. Stankowski, Jeannette N. Lee, Byoung Dae Grima, Jonathan C. Chen, Guanxing Ko, Han Seok Lee, Yunjong Swing, Debbie Tessarollo, Lino Dawson, Ted M. Dawson, Valina L. |
author_sort | Xiong, Yulan |
collection | PubMed |
description | Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified as an unambiguous cause of late-onset, autosomal-dominant familial Parkinson’s disease (PD) and LRRK2 mutations are the strongest genetic risk factor for sporadic PD known to date. A number of transgenic mice expressing wild-type or mutant LRRK2 have been described with varying degrees of LRRK2-related abnormalities and modest pathologies. None of these studies directly addressed the role of the kinase domain in the changes observed and none of the mice present with robust features of the human disease. In an attempt to address these issues, we created a conditional LRRK2 G2019S (LRRK2 GS) mutant and a functionally negative control, LRRK2 G2019S/D1994A (LRRK2 GS/DA). Expression of LRRK2 GS or LRRK2 GS/DA was conditionally controlled using the tet-off system in which the presence of tetracycline-transactivator protein (tTA) with a CAMKIIα promoter (CAMKIIα-tTA) induced expression of TetP-LRRK2 GS or TetP-LRRK2 GS/DA in the mouse forebrain. Overexpression of LRRK2 GS in mouse forebrain induced behavioral deficits and α-synuclein pathology in a kinase-dependent manner. Similar to other genetically engineered LRRK2 GS mice, there was no significant loss of dopaminergic neurons. These mice provide an important new tool to study neurobiological changes associated with the increased kinase activity from the LRRK2 G2019S mutation, which may ultimately lead to a better understanding of not only the physiologic actions of LRRK2, but also potential pathologic actions that underlie LRRK2 GS-associated PD. |
format | Online Article Text |
id | pubmed-5355896 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Society for Neuroscience |
record_format | MEDLINE/PubMed |
spelling | pubmed-53558962017-03-20 Overexpression of Parkinson’s Disease-Associated Mutation LRRK2 G2019S in Mouse Forebrain Induces Behavioral Deficits and α-Synuclein Pathology Xiong, Yulan Neifert, Stewart Karuppagounder, Senthilkumar S. Stankowski, Jeannette N. Lee, Byoung Dae Grima, Jonathan C. Chen, Guanxing Ko, Han Seok Lee, Yunjong Swing, Debbie Tessarollo, Lino Dawson, Ted M. Dawson, Valina L. eNeuro New Research Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified as an unambiguous cause of late-onset, autosomal-dominant familial Parkinson’s disease (PD) and LRRK2 mutations are the strongest genetic risk factor for sporadic PD known to date. A number of transgenic mice expressing wild-type or mutant LRRK2 have been described with varying degrees of LRRK2-related abnormalities and modest pathologies. None of these studies directly addressed the role of the kinase domain in the changes observed and none of the mice present with robust features of the human disease. In an attempt to address these issues, we created a conditional LRRK2 G2019S (LRRK2 GS) mutant and a functionally negative control, LRRK2 G2019S/D1994A (LRRK2 GS/DA). Expression of LRRK2 GS or LRRK2 GS/DA was conditionally controlled using the tet-off system in which the presence of tetracycline-transactivator protein (tTA) with a CAMKIIα promoter (CAMKIIα-tTA) induced expression of TetP-LRRK2 GS or TetP-LRRK2 GS/DA in the mouse forebrain. Overexpression of LRRK2 GS in mouse forebrain induced behavioral deficits and α-synuclein pathology in a kinase-dependent manner. Similar to other genetically engineered LRRK2 GS mice, there was no significant loss of dopaminergic neurons. These mice provide an important new tool to study neurobiological changes associated with the increased kinase activity from the LRRK2 G2019S mutation, which may ultimately lead to a better understanding of not only the physiologic actions of LRRK2, but also potential pathologic actions that underlie LRRK2 GS-associated PD. Society for Neuroscience 2017-03-17 /pmc/articles/PMC5355896/ /pubmed/28321439 http://dx.doi.org/10.1523/ENEURO.0004-17.2017 Text en Copyright © 2017 Xiong et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | New Research Xiong, Yulan Neifert, Stewart Karuppagounder, Senthilkumar S. Stankowski, Jeannette N. Lee, Byoung Dae Grima, Jonathan C. Chen, Guanxing Ko, Han Seok Lee, Yunjong Swing, Debbie Tessarollo, Lino Dawson, Ted M. Dawson, Valina L. Overexpression of Parkinson’s Disease-Associated Mutation LRRK2 G2019S in Mouse Forebrain Induces Behavioral Deficits and α-Synuclein Pathology |
title | Overexpression of Parkinson’s Disease-Associated Mutation LRRK2 G2019S in Mouse Forebrain Induces Behavioral Deficits and α-Synuclein Pathology |
title_full | Overexpression of Parkinson’s Disease-Associated Mutation LRRK2 G2019S in Mouse Forebrain Induces Behavioral Deficits and α-Synuclein Pathology |
title_fullStr | Overexpression of Parkinson’s Disease-Associated Mutation LRRK2 G2019S in Mouse Forebrain Induces Behavioral Deficits and α-Synuclein Pathology |
title_full_unstemmed | Overexpression of Parkinson’s Disease-Associated Mutation LRRK2 G2019S in Mouse Forebrain Induces Behavioral Deficits and α-Synuclein Pathology |
title_short | Overexpression of Parkinson’s Disease-Associated Mutation LRRK2 G2019S in Mouse Forebrain Induces Behavioral Deficits and α-Synuclein Pathology |
title_sort | overexpression of parkinson’s disease-associated mutation lrrk2 g2019s in mouse forebrain induces behavioral deficits and α-synuclein pathology |
topic | New Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5355896/ https://www.ncbi.nlm.nih.gov/pubmed/28321439 http://dx.doi.org/10.1523/ENEURO.0004-17.2017 |
work_keys_str_mv | AT xiongyulan overexpressionofparkinsonsdiseaseassociatedmutationlrrk2g2019sinmouseforebraininducesbehavioraldeficitsandasynucleinpathology AT neifertstewart overexpressionofparkinsonsdiseaseassociatedmutationlrrk2g2019sinmouseforebraininducesbehavioraldeficitsandasynucleinpathology AT karuppagoundersenthilkumars overexpressionofparkinsonsdiseaseassociatedmutationlrrk2g2019sinmouseforebraininducesbehavioraldeficitsandasynucleinpathology AT stankowskijeannetten overexpressionofparkinsonsdiseaseassociatedmutationlrrk2g2019sinmouseforebraininducesbehavioraldeficitsandasynucleinpathology AT leebyoungdae overexpressionofparkinsonsdiseaseassociatedmutationlrrk2g2019sinmouseforebraininducesbehavioraldeficitsandasynucleinpathology AT grimajonathanc overexpressionofparkinsonsdiseaseassociatedmutationlrrk2g2019sinmouseforebraininducesbehavioraldeficitsandasynucleinpathology AT chenguanxing overexpressionofparkinsonsdiseaseassociatedmutationlrrk2g2019sinmouseforebraininducesbehavioraldeficitsandasynucleinpathology AT kohanseok overexpressionofparkinsonsdiseaseassociatedmutationlrrk2g2019sinmouseforebraininducesbehavioraldeficitsandasynucleinpathology AT leeyunjong overexpressionofparkinsonsdiseaseassociatedmutationlrrk2g2019sinmouseforebraininducesbehavioraldeficitsandasynucleinpathology AT swingdebbie overexpressionofparkinsonsdiseaseassociatedmutationlrrk2g2019sinmouseforebraininducesbehavioraldeficitsandasynucleinpathology AT tessarollolino overexpressionofparkinsonsdiseaseassociatedmutationlrrk2g2019sinmouseforebraininducesbehavioraldeficitsandasynucleinpathology AT dawsontedm overexpressionofparkinsonsdiseaseassociatedmutationlrrk2g2019sinmouseforebraininducesbehavioraldeficitsandasynucleinpathology AT dawsonvalinal overexpressionofparkinsonsdiseaseassociatedmutationlrrk2g2019sinmouseforebraininducesbehavioraldeficitsandasynucleinpathology |